UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE LORENA

IGOR HIDEKI CABIANCA YAMAMOTO

Arquitetura de dados hibrida no contexto de loT e Big Data: um estudo para

provisionamento de avicultura de precisao

Lorena

2021

IGOR HIDEKI CABIANCA YAMAMOTO

Arquitetura de dados hibrida no contexto de loT e Big Data: um estudo para

provisionamento de avicultura de precisao

Trabalho de graduacao apresentado a Escola de
Engenharia de Lorena da Universidade de Sao
Paulo como requisito parcial para obtencao do
titulo de engenheiro fisico.

Orientador: Prof. Dr. Carlos Yujiro Shigue

Lorena

2021

AUTORIZO A REPRODUCAO E DIVULGACAO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO,
PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE

Ficha catalogréfica elaborada pelo Sistema Automatizado
da Escola de Engenharia de Lorena,
com os dados fornecidos pelo(a) autor(a)

Yamanot o, | gor Hideki Cabianca
Arquitetura de dados hibrida no contexto de iot e
bi g data: um estudo para provisionanento de
avicultura de precisdo / lgor H deki Cabianca
Yamanot o; orientador Prof. Dr. Carlos Yujiro Shigue.
- Lorena, 2021.
71 p.

Monogr afi a apresentada conop requi sito parcial
para a concl usdo de G aduacdo do Curso de Engenharia
Fisica - Escola de Engenharia de Lorena da
Uni ver si dade de S&do Paul 0. 2021

1. Internet das coisas. 2. Big data. 3.
Avicultura. |I. Titulo. Il. Shigue, Prof. Dr. Carlos
Yujiro, orient.

A minha irma, Aitka Yamamoto.

Te amo eternamente.

Agradecimentos

Meus agradecimentos especiais a Universidade de Sao Paulo e a Escola de Engenha-
ria de Lorena, que, por tanto tempo, proporcionaram a estrutura de ensino e de pesquisa
mais que necessaria para a minha formacao, aos grandes professores que tive contato, que
sempre buscaram por consolidar todo o conhecimento possivel, e aos meus amigos, que em

muitos momentos me ensinam coisas que fogem da minha capacidade de compreensao e

que eu serei eternamente grato.

"Nao importa qual caminho trilhe, nao se ilhe,
sonho que se sonha junto é o maior louvor.
Amem!"

Sintese

RESUMO

YAMAMOTO, IGOR H. C. Arquitetura de dados hibrida no contexto de IoT e
Big Data: um estudo para provisionamento de avicultura de precisao. 2021.
Numero de folhas 71 f. Monografia (Trabalho de graduagao de Engenharia Fisica) - Escola

de Engenharia de Lorena, Universidade de Sao Paulo, Lorena, 2021.

O presente trabalho tem como objetivo integrar softwares Open-Source e o provedor de
servigos de nuvem AWS (Amazon Web Services) para provisionar uma arquitetura hibrida
de dados orientada & IoT (Internet of Things). Neste estudo de caso, a arquitetura é
constituida de trés camadas: gateway (coleta de dados de sensores e limpeza), regional
(comunicagdo com gateway e esteira de dados) e nuvem (armazenamento de dados estrutu-
rados e nao estruturados). A comunicagdo com os sensores ¢ feita via protocolo MQTT,
com servidores hospedados em cada nédo de gateway, e entao publicados a topicos de um
cluster Kafka por intermédio de um moédulo Python. Na camada regional, as mensagens sao
tratadas em uma esteira de dados NiFi e entao enviadas aos servigos da AWS S3 (Batch,
data lake), DynamoDB (Stream, nao relacional) e RDS (Stream, dados estruturados). As
aplicagdes Open-Source foram virtualizadas em containers Docker e o cddigo de integracao
foi publicado no GitHub. A integracao dos servigos foi testada e usada em uma prova de
conceito através de um simulador de dados sintéticos orientado ao cenario de avicultura
de precisao, constituido de duas estagoes de monitoramento e supervisionando métricas de
temperatura, amonia, luminosidade e umidade relativa. Como resultado, foi obtido um

relatorio com as métricas em tempo real dos sensores em cada gateway.

Palavras-chave: Internet das coisas, Big Data, avicultura

ABSTRACT

YAMAMOTO, IGOR H. C. Hybrid data architecture oriented to IoT and Big-
Data: a study on smart poultry provision.. 2021. 71 p. Monograph (Undergraduate
Thesis in Engineering Physics). Engineering School of Lorena, University of Sdo Paulo,
Lorena, 2021.

The current work aims to integrate Open-Source software and AWS services (Amazon Web
Services) to provision a hybrid data architecture focused on IoT (Internet of Things). In
this study case, the architecture is composed of three layers: gateway (data collection and
cleaning), regional (communication with gateways and data pipeline), and cloud (structu-
red and non-structured data storage). The communication with the sensors is performed
via MQTT, with brokers hosted in each gateway, and then published to topics of a Kafka
cluster by a Python module. In the regional layer, messages are processed with NiFi and
then sent to AWS S3 (Batch, data lake), DynamoDB (Stream, non-relational) and RDS
(Stream, structured). Open-Source applications were virtualized using Docker containers
and the integration code was published on GitHub. The integration was tested and used
in a proof of concept based on smart poultry, modelled with two monitored stations and
gathering metrics of temperature, ammonia, luminosity and relative humidity. As a re-

sult, it was possible to obtain a report with real-time metrics of the sensors in each gateway.

Keywords: Internet of Things, Big Data, poultry

AWS
CSV
DW
ETL
GCP
IA

[oT
MQTT
RDBMS
RDS
S3

SQL

TTL

Lista de abreviaturas e siglas

— Amazon Web Services

— Comma Separated Values

— Data Warehouse

— FEatract, Transform, Load

— Google Cloud Platform

— Inteligéncia Artificial

— Internet of Things

— Message Queue Telemetry Transport Protocol
— Relational Database Management System
— Relational Database Service

— Simple Storage Service

— Structured Query Language

— Time To Live

Figura 1 —
Figura 2 —
Figura 3 —
Figura 4 —
Figura 5 —
Figura 6 —
Figura 7 —
Figura 8 —
Figura 9 —

Figura 10 —
Figura 11 —
Figura 12 —
Figura 13 —
Figura 14 —
Figura 15 —
Figura 16 —
Figura 17 —
Figura 18 —
Figura 19 —
Figura 20 —
Figura 21 —
Figura 22 —
Figura 23 —
Figura 24 —
Figura 25 —
Figura 26 —

Figura 27 —

Figura 28 —

Figura 29 —
Figura 30 —

Lista de ilustracoes

Arquitetura de fog computing
Niveis do paradigma [oT.
Exemplo de publicacao e consumo via MQTT
Exemplo de publicacao e consumo em brokers Katka
Fator de replicagao e particionamento
Paradigmas de processamento de dados.
Diagrama de relacionamento de um modelo star schema.
Diagrama de containers Docker e consumo de recursos do host.
Exemplo de esteira de dados para aplicagoes de Inteligéncia Artificial
em estacoes de avicultura.
Arquitetura de dados proposta por LASHARI et al. (2018).
Arquitetura de dados proposta por RAJ; JAYANTHI (2018).
Representacao da arquitetura geral.
Diagrama de conexdes de servicos Docker.
Fluxo légico do servico Python.
Esteira de dados NiFigeral
Esteira de consumo Kaftka
Esteira de ingestao S3o
Esteira de ingestao DynamoDB o000
Controladores de servicos NiFi usados no projeto
Detalhes de servicos AWS S3 e AWS DynamoDB
Representacao da arquitetura integrada para o caso estudo.
Diagrama de redes dos servigos Docker para estudo de caso.
Esteira geral
Esteira para salvar em tabelas DynamoDB
Diagrama de tabelas no banco de dados Postgres, esquema iotdb . . .
Execucao de consumo e publicagoes de mensagens no topico "devices".
A esquerda a publicacio de mensgaens e & direita o consumo, bem como
o resultado de publicagcao. L.
Integracio de servidor MQTT e Python. A esquerda as publicacdes e &
direita os logs.
Execugao de consumo e publicagdes de mensagens no tépico "test-topic',
Kafka. A esquerda a publicacdo e & direita o consumo.
Teste de integracao do servidor MQTT ao broker Kaftka.

Consumo de mensagens publicadas em broker Kafka usando NiFi. . . .

36

51

23
53

Figura 31 — Chegada de mensagens nos processos de ingestao do S3 e DynamoDB. 54
Figura 32 — Ingestdo de mensagens no S3.)
Figura 33 — Ingestao de mensagens no DynamoDB. 26

Figura 34 — Extracdo de informacoes de brokers Kafka ativos no orquestrador Zoo-

Figura 35 — Detalhamento de topico devices-temperatureem cluster Katka. . . . 57
Figura 36 — Particionamento dos sub-diretérios, no broker a, para cada um dos

topicos criados. L 57
Figura 37 — Publicacao de mensagens no tépico devices-temperature com chave

de particionamento. 58
Figura 38 — Contetido dos arquivos de logs nos brokers b (esquerda) e ¢ (direita)

para o tépico devices-temperature, particaio 4. 58
Figura 39 — Publicacao e escrita de mensagens no cenario de queda do broker c. . . 59
Figura 40 — Armazenamento de batch de dados no S3, particionados por data e hora. 60

Figura 41 — Histdérico de requisigdes de escrita feito em cima das tabelas DynamoDB. 61

Figura 42 — Dashboard para os eventos de amoénia. 63
Figura 43 — Dashboard para os eventos de temperatura. 64
Figura 44 — Dashboard para os eventos de luminosidade. 65

Figura 45 — Dashboard para os eventos de umidade. 66

Lista de tabelas

Tabela 1 — Especificacoes de softwares utilizados na implementagao da etapa geral. 37

Tabela 2 — Especifica¢oes de sensores principais modelados no experimento de caso. 44

3.1
311
3.2
3.3
331
3.3.2
3.33
3.34
3.4

4.1

4.1.1
4.1.2
4.1.3
4.2

421
422
423
4.2.4

5.1
511
5.1.2
513
5.2
5.3
54

Sumario

INTRODUCAO i ittt it e e et e et e et e 14
OBIJETIVOS e e e e e e e e e e e 16
FUNDAMENTACAO TEORICA i iiin.. 17
Big-Data e computacao em nuvem 17
Edge e Fog computing 18
loT: a integracao dos objetos a internet 20
Softwares e ferramentas 22
Streaming de dados e mensageria 22
Esteira de processamento de dados 25
Armazenamentode dados 27
Containers, aplicacdes virtualizadas e Docker 29
Aviculturade precisao 30
METODOLOGIA e e e e e e e 34
Etapa geral: Modelagem de integracao de servicos 34
Gateway 36
Regional 39
Nuvem 43
Etapa especifica: Modelagem de experimento conduzido 44
Dados sintético, modelagem e especificacbes 44
Gateways e pré-tratamentodedados 46
Cluster Kafka e esteira de dados Nifi 47
Armazenamento de dados em Streame Batch. 48
RESULTADOS e e e e e e s e e e e 50
Integracdao de servicoso 50
Gateway 50
Regional 52
Nuvem 53
Cluster Kafka e replicacao de mensagens 54
Consumo de dados danuvem 59
Discussbes 62
CONCLUSAO e e 67

REFERENCIAS

14

1 INTRODUCAO

O cenério global de informagoes atualmente representa uma rede extremamente
complexa, interconectada pela Internet e com vérias fontes que geram uma volumetria de
dados absurda. Com o advento da evolugao tecnoldgica e da eletronica, esta rede passou de
ser definida apenas por maquinas, operadas por seres humanos, para ser complementada
também por "coisas" que se encontram conectadas a Internet. Essas "coisas" sdo sensores,
atuadores ou qualquer dispositivo que possa receber e transmitir dados. Com isso, a
Internet deixa de ser uma rede global orientada apenas as pessoas, e passa entao a ser

uma "Internet das coisas' (Internet of Things, IoT).

Se tratando de aplicagoes, este paradigma traz novas possibilidades disruptivas
de tecnologia e negocio. Um modelo de exemplo sao as transformacgoes "smart", isto é,
a habilidade de se trazer a capacidade computacional e a conexao com a Internet para
"dar vida' a utensilios domésticos, como lampadas (smart LEDs) e televisores (smart
TVs). Porém, vai muito além de simplesmente deixar as coisas "inteligentes": com IoT,
é possivel realizar o monitoramento em escala de industrias, de esta¢oes de producao
agricola, alimentar algoritmos de previsao, integrar com outras fontes para geragao de
valor, dentre muitas outras atividades. De fato, este paradigma ja esta presente em setores
como hospitalar, automotivo, industrial, agricola, manufatura, logistica e doméstico, e
promete, ao longo dos préximos anos, estar presente em todas as esferas do mercado de

tecnologia.

Com isso, vem a tona novos desafios, sendo um deles a de escalabilidade. Como
realizar uma implementagao em escala de dispositivos de sensoriamento? Como fazer a
manutencao e a calibracao dos sensores? Como garantir a integracao de ponta a ponta
sem problemas que sejam criticos? Ainda que todas essas perguntas ja tenham respostas,
modelos ou metodologias, um problema recorrente é em questao a infraestrutura de dados,
ou seja, quais recursos serao usados para provisionar toda a esteira de tratamento e

armazenamento de dados.

Esta imensa teia de informacoes e interagoes entre usuarios e dispositivos introduz
uma complexidade extrema, e esta associada, no universo de dados, com uma volumetria,
velocidade e variabilidade alta, e que pode trazer diferentes valores dependendo de como é
tratado. Esses quatro fatores usualmente definem um cenario que passou a ser comum entre
os produtos digitais que é hoje denominado como "Big Data", isto é, casos que possuem
como fator inerente a necessidade de lidar com uma diversidade de informacoes e mesmo

assim buscar gerar valor através de produtos ou servigos.

Do lado da tecnologia, temos atualmente uma ampla gama de ferramentas e

15

produtos que provisionam solugoes em diversos casos. Por exemplo, é possivel hospedar
toda a infraestrutura tecnolégica em um provedor de servigos em nuvem, como a Amazon
Web Services (AWS) ou a Microsoft Azure, as quais oferecem solugoes proprietarias e
nativas ao ambiente, mas que também possibilitam fazer o uso de softwares de codigo
aberto (open-source). De fato, as possibilidades de arquitetura atualmente sao diversas, e

em geral elas oferecem escalabilidade, resiliéncia, baixo custo e seguranca da informacao.

Neste estudo, realizamos uma revisao sobre a literatura no assunto de arquitetura
de dados para o contexto de IoT. Com base nisso, desenhamos uma proposta de arquitetura
hibrida e uma prova de conceito baseado em ferramentas open-source integradas com
servigos de armazenamento da provedora AWS, orientada ao assunto de avicultura de
precisao. Os testes foram feitos através de um simulador de dados sintéticos de IoT, e os
cbdigos da integracao foram virtualizados em containers Docker e distribuidos em um
repositorio do GitHub. Como resultado, foi possivel extrair as métricas dos sensores por

meio de um dashboard em tempo real.

16

2 OBJETIVOS

Este estudo tem como objetivo revisar a literatura acerca de arquiteturas de Big
Data dedicadas a aplicagoes IoT, com foco em avicultura de precisao. A partir desta
revisao, é proposto um modelo de arquitetura de dados hibrida orientada para aplicacoes
IoT. A validacao, testes das integracoes e analises de resiliéncia das ferramentas sao feitas
a partir de um simulador de dados sintéticos. Por fim, busca-se disponibilizar as métricas

e os dados gerados pelos sensores em um dashboard em tempo real.

17

3 FUNDAMENTACAO TEORICA

Nesta secao serao introduzidas as técnologias utilizadas neste trabalho, bem como

o topico de avicultura de precisao e sua relacao com IoT.

3.1 Big-Data e computacao em nuvem

Ao se pensar em dispositivos que estao integrados a internet, em especial frente
aos grandes avancos da eletronica, as possibilidades de emergéncia de tecnologias disrupti-
vas sao impulsionadas como nunca antes foi visto. A partir disso, ideias de intregagoes
multiparadigmaticas, como Industria 4.0, aprendizado de maquina, inteligéncia de negdcio
e novas experiéncias de usuario deixam de ser promessas futuristicas para entao se tornar

tendéncias da tecnologia.

Porém, um fendmeno que acontece ao se integrar muitos atuadores que possuem
algum tipo geracao, interacao ou analise de informagoes é a presenga de um volume
de dados muito alto, acompanhado de um grande fluxo (valocidade), variabilidade e de
diferentes tipos de valores. Essas quatro caracteristicas sao conhecidas como os 4V’s que
compoem o que é entendido hoje como Big Data, ou seja, problemas ou aplicagoes que
necessitam de uma infraestrutura de computacao flexivel, robusta e simples para comportar
todas as tarefas corporativas de forma resiliente, segura e escaldavel (MALEK et al., 2017).
De fato, com uma estimativa de mais de 1 trilhao de dispositivos integrados a Internet até
2030, garantir valor de negdcio, bem como assegurar estabilidade e promover capacidades
analiticas sobre os dados deixa de ser uma tarefa simples e passa a exigir infraestruturas
que oferecam caracteristicas como processamento distribuido, comunicacao de eventos em
tempo real, resiliéncia para suportar fluxos altos e varidveis de dados (high-throughput) e
capacidade de rapida escrita e leitura em meméria para bancos de dados (MARJANT et

al., 2017).

Pensar em uma demanda tao alta por flexibilidade de recursos, combinado com
cenarios que exigem escalabilidade rapida e criagdo de produtos impulsionado por execugoes
ageis, faz entender que uma infraestrutura computacional para prover uma solucao de IoT
nao é conveniénte em modelos de computacao tradicionais, como por exemplo em estagoes
completamente fisicas (conhecido também como on-premise (PAHL; XIONG; WALSHE,
2013)). Um paradigma atual que mitiga muitos desses problemas é o de Cloud computing
(computagao em nuvem). Nele, o acesso a infraestruturas, plataformas e softwares sao feitos
de acordo com a necessidade, onde a alocacao ocorre via requisi¢coes ou sob demanda, e o

pagamento é respectivo ao uso (filosofia pay-as-you-go) (AUMONT et al., 2018). Muitas

3.1. BIG-DATA E COMPUTACAO EM NUVEM 18

empresas atualmente oferecem tais servigos, e um dos principais deles sdo a Amazon Web
Services (AWS), Microsoft Azure, e Google Cloud (GCP), IBM Cloud, Oracle Cloud, Digital
Ocean, dentre muitos outros (JADEJA; MODI, 2012).

Ainda que seja possivel realizar a migracdo de uma infraestrutura inteiramente
on-premise para a nuvem, alguns fatores exigem atencao e cuidado no momento de decisao,
como custos, disponibilidade e seguranga (JADEJA; MODI, 2012). Desta forma, muitas
organizacoes acabam optando por implementar uma arquitetura hibrida, ou seja, distribuir
as suas diversas tarefas entre recursos fisicos e em nuvem. Nesta abordagem, é possivel
otimizar e flexibilizar o que ja se tem disponivel, bem como sofisticar e diversificar a
arquitetura com a possibilidade de, por exemplo, contratar servicos da nuvem apenas para

armazenamento ou qualquer outra tarefa especifica (ODUN-AYO et al., 2018).

Neste trabalho, é utilizado a abordagem hibrida para alocar tarefas de processa-
mento em maquinas fisicas e realizar o armazenamento na nuvem da AWS. A sec¢ao de
Metodologia Sec.(4) apresenta o escopo da proposta, bem como o detalhamento de cada

uma das tecnologias, softwares e servigos da nuvem utilizadas.

3.1.1 Edge e Fog computing

Ao se tratar de integracoes de dispositivos a nuvem, é pertinente mencionar
algumas limitacdes comuns. Como ja foi mencionado, uma rede [oT tem como uma das
principais caracteristicas a conectividade intermitente, ou seja, é comum que sensores
tenham oscilagoes de acesso a Internet, o que impacta o uso e o valor dos dados gerados
(AUMONT et al., 2018). Além disso, muitos dispositivos nao sdo apenas sensores, mas
como também atuadores, isto é, realizam uma determinada acao programada baseado
em um sinal de entrada. Em aplicacoes de veiculos autonomos, medicina inteligente ou
agricultura de precisao, a falta de conexao de um atuador com a Internet pode ser fatal e

causar Consequéncias graves.

Com isso, surge a necessidade de trazer o poder de processamento computacional,
usualmente alocado em clusters na nuvem, mais proximo aos sensores (também conceituado
como "Edge", ou borda). Qualquer camada de processamento que esteja conectada a ele e
que preceda contato com a nuvem é denominado de Fog-computing, isto é, "computacao em
névoa', assim como demonstra a figura Fig.(1). Qualquer dispositivo que consiga suportar
este poder de processamento é denominado "'nédo". Alguns dos principais problemas que
sao atendidos mediante este modelo sao (AUMONT et al., 2018):

e Mobilidade e reconhecimento geografico: suporte a mobilizacao livre, mediante
reconhecimento dos pontos geograficos que se encontram tanto os sensores quanto a

sua propria localizacao;

3.1. BIG-DATA E COMPUTACAO EM NUVEM 19

e Conectividade de baixa laténcia: rapida comunicacao com data-centers, estagoes

fisicas ou servigos de nivens, assim como com 0s seus Sensores;

e Heterogeneidade e interoperabilidade: suporte a processamentos que servem a

diversas finalidades, onde todos os nédos devem ser inter-comunicaveis.

Figura 1 — Arquitetura de fog computing

Fonte: AUMONT et al. (2018)

Além os pontos citados, a camada de fog é utilizada usualmente para a realizagao
de algum nivel de pré-tratamento de dados, como validagoes de esquema e seguranca de
fonte (GUARDO et al., 2018). Neles ainda é comum existir abstragdes de protocolos e
tecnologias de comunicagao, os quais, no contexto de [oT, podem ser os mais variados, como
WiFi, LTE, Bluetooth, Zigbee, MQTT, XMPP, dentre outros (KALLA; PROMBAGE;
LIYANAGE, 2020).

Tratando-se dos nddos de fog, existem alguns tipos de dispositivos que possibilitam
a existéncia da camada intermediaria de processamento. Alguns exemplos sao routers,
switches, porém, o mais comum sao os gateways, que desempenham a funcao de inter-
medidrio entre os sensores e a nuvem (AUMONT et al., 2018). Porém, no trabalho de
CIRANI et al. (2015), o conceito de gateway é projetado além de um simples intermediario

de comunicacao, e conceitua o que denominaram de loT Hub, isto é, um nédo de fog

3.2. 10T: A INTEGRACAO DOS OBJETOS A INTERNET 20

que também herda funcionalidades procedurais e de processamento l6gico sobre os sinais

gerados pelos sensores, cujo prototipo foi implementado através de um modulo de Raspberry

Pi (RPi) Model B.

No presente projeto, os nédos foram desenhados para suportar as mesmas funcio-
nalidades légicas que no trabalho de CIRANI et al. (2015). Desta forma, a implementagao
dos softwares foram via virtualizagao em imagens Docker, com suporte a arquiteturas
arm32 e armb4, isto é, compativeis com modulos de Raspberry Pi. Uma contextualizacao
de todos os recursos serd apresentado a seguir, e os detalhes de integracao serao discutidos

na secao de Metodologia Sec.(4).

3.2 loT: a integracdo dos objetos a internet

Internet of Things, ou IoT, é o termo atribuido a grande rede de dispositivos fisicos
que se encontram interconectados através da Internet (LIYANAGE et al., 2020). Tais
dispositivos contém tecnologias de sistemas embarcados e sao usados para comunicagao,
sensoriamento e interagdo com seus ambientes externos. AUMONT et al. (2018) afirma
que sistemas [oT sdo usualmente caracterizados por possuirem: i) arquiteturas associadas
eficientes e escaldveis; ii) quantidade massiva de dispositivos e nédos interconectados;
iii) conectividade intermitente ou instaveis. A aplicagdo deste paradigma tecnoldgico se
encontra presente em diversos contextos, como automagao residencial, gestao e monitora-
mento de trafego, sensoriamento climatico, agricultura de precisdo e Big-Data e Analytics,
tornando-se assim um facilitador na criacdo de tecnologias de multi-dominio (AUMONT
et al., 2018; Shanzhi Chen et al., 2014; TALAVERA et al., 2017; LEE; LEE, 2015).

A disseminacao de aplicagoes IoT pressupoe a orquestracao de diversas tecnologias
interdependentes que estao, grosso modo, caracterizadas em quatro niveis assim como
mostra a figura Fig.(2): i) servigos e dispositivos, que, através de protocolos de conectivi-
dade como WiFi, Bluetooth, RFID ou LoRa, geram ou recebem dados; ii) conectividade
local e gateways, responsaveis por prover os dispositivos locais com conexao a Internet
e/ou capacidade de processamento 16gico (chamado também de fog computing); iii) co-
nectividade global, a qual dispoe de recursos de rede, infraestrutura e data-centers para
prover conectividade e seguranga dos dados gerados pelos dispositivos; iv) processamento
e aplicagoes, onde os dados coletados pelos dispositivos sao usados para visualizagao,
tratamento, analise, aprendizado de algoritmos de Machine-Learning ou em qualquer tipo
de produto ou geracao de valor (AUMONT et al., 2018).

Com a evolugao de tecnologias de informagao e comunicagao, bem como do design
de sistemas IoT e arquiteturas, este paradigma promete transformar e trazer novas

possibilidades para os principais setores da economia, como producao industrial, transporte,

medicina e industria agraria (TOKAREVA; VISHNEVSKIY, 2018). Além disso, novos

3.2. I0T: A INTEGRACAO DOS OBJETOS A INTERNET 21

Figura 2 — Niveis do paradigma IoT.

=]
= -
‘I c E— [=]
Z Visualization <4
E =
=]
]
fini
3.2 _
S8 = .
O g =
51 Remote
Data-centers Web server Cloud
I
& .‘.‘:'1- }'al:"_ [_|
_ .; q‘_[,‘" ¥ dr"\l B = 'E'
E .: L]
g2
=
=]
B Gateway Proxy Router Switch
o =
Y]
k= g2
5 8
v g
95]

Fonte: AUMONT et al. (2018)

modelos de negdcio e de valor sao possiveis, dada a possibilidade de integrar grandes
tendéncias tecnoldgicas, como Industria 4.0, Big-Data, Inteligéncia artificial e blockchain
(GUEVARA; SILVA, 2019; HAJIHEYDARI; TALAFIDARYANI; KHABIRI, 2019).

No Brasil, o cenério ainda ¢ de instauragao e adaptacao, sendo, em sua grande
parte, um parque para implementacao de técnologias cujas patentes sao majoritariamente
de origem norte-americana ou chinesa (ALMEIDA et al., 2015). Ainda assim, promissor:
com uma expectativa de geracao de 50 a 200 bilhdes de ddlares até 2025 apenas em
territorio brasileiro, estd posicionada, segundo BNDES, como uma das maiores tendéncias
tecnolégicas do setor de tecnologia da informagao (SILVA; JESUS, 2020). O desenvolvi-

3.3. SOFTWARES E FERRAMENTAS 22

mento no Brasil é atualmente orientado de acordo com o Plano Nacional de Internet das
Coisas, decretada pelo Governo Federal em 25 de Junho de 2019, a qual planeja fazer o
uso da tecnologia para promover melhorias sociais, incrementar produtividade em setores

industriais e fomentar atividade econdmica.

3.3 Softwares e ferramentas

Aqui serdao abordadas algumas das ferramentas cruciais para o desenvolvimento
deste projeto. Em suma, serao apresentadas as ferramentas de distribuicao de eventos em
tempo real (stream), chamados também de "mensageria', os softwares de processamento

de dados e as técnicas de armazenamento de dados.

3.3.1 Streaming de dados e mensageria

O termo streaming de dados se refere, em suma, a habilidade de se extrair, tratar e
armazenar dados em tempo real. AKIDAU; CHERNYAK; LAX (2018) definem que um
sistema stream é orientado a aplicagoes onde os cojuntos de dados tendem, teoricamente,
ao infinito, cujo tratamento, transmissao e armazenamento devem ser feitos de elemento
a elemento. Em comparagao ao tratamento de dados agregados (conjuntos finitos, com

operagoes orientadas aos batchs de dados), o paradigma de streaming implica em novos

desafios (BAHRI et al., 2021), como:

e Volumetria e uso de memoria: a quantidade de eventos e registros que entram
em um stream possui margem a variabilidade extremamente alta, de forma que toda
a infraestrutura deve ser adaptavel e escalavel. Desta forma, assim como o conjunto
de dados tende ao infinito, a disponibilidade de recursos de memoria alocaveis deve

ser compativel com a quantidade de registros sendo processado de forma distribuida;

e Tempo de execugao e processamento: dependendo da aplicagao, o tempo de

execucao deve ser o minimo possivel para atender as requisi¢oes de negocio;

e Reestruturacao de paradigma: muitos modelos de inteligéncia artificial e de
inteligéncia de mercado foram construidos, historicamente, visando o modelo tradici-
onal de processamento (batch, ou seja, dados agregados). Para modelos em stream, o
processamento deve ser feito em tempo real, e portanto pode implicar em mudancgas

de modelos e algoritmos disseminados em organizac¢oes e comunidades.

Uma aplicagao de streaming tem, como um dos principais componentes, um software
que realiza a distribuicdo de eventos em tempo real. Neste contexto, tais eventos sao

também denominados "mensagens' (message), onde o gerenciamento dessas mensagens

3.3. SOFTWARES E FERRAMENTAS 23

é feito via um message broker. Em geral, nos brokers, as mensagens podem ser enviadas
(publicadas) e resgatadas (consumidas), e esta interagdo ocorre mediante um "tépico’
(topic). Qualquer mensagem que é publicada a um tépico é enfileirada, de forma que

qualquer consumo é cronolédgico sobre a ordem de publicacao.

Uma das principais vantagens de se utilizar um software de mensageria é a pos-
sibilidade de consolidar em uma ferramenta tnica todo o gerenciamento de integracao e
comunicacio entre sistemas. E possivel suportar, para um mesmo tépico, diversas fontes
que realizam publicagoes, o que pode ser consumido por uma ou mais aplicagoes. Dentre
alguns exemplos de softwares de mensageria, temos o RabbitMQ, Apache Kafka, Mosquitto
MQTT e Apache Pulsar.

Neste projeto, implementamos duas camadas de comunicagao por mensageria: uma
entre os sensores e os nodos de gateway, no qual a comunicacgao é feita via Mosquitto
MQTT, e outra entre os nédos de gateway e a camada de tratamento de dados, no qual a
comunicagao é feita via Apache Kafka. Elas serao abordadas a seguir, e o detalhamento

da integragao é feito na segao de Metodologia Sec.(4).

Em IoT, ¢ mais desejavel estabelecer a interconexao entre diversos dispositivos
através de redes que se comuniquem de forma simples, rapida e segura. As normas
implementadas para trocas de mensagens e mecanismos de autenticagao via rede sao
chamadas de "protocolos', e dentro do contexto de tecnologia de informacao existem
diversos, como HTTP (Hypertext Transfer Protocol), FTP (File Transfer Protocol), SSH
(Secure Shell) e TCP/IP (Transmission Control Protocol/Internet Protocol), onde cada
um possui uma série de tipos de mensagens possiveis que podem ser trocadas, como POST,
GET, PUT e DELETE no contexto de HTTP (GODFREY, 2009).

Um protocolo que atende as necessidades de seguranga e performance no contexto
de IoT é o "Message Queue Telemetry Transport'(MQTT), o qual é baseado no modelo de
publicacao-consumo. Neste protocolo, os tépicos seguem uma estrutura hierarquica, onde
as mensagens (agndsticas de esquema de contetido), ao serem publicadas, sdo distribuidas
dentre todos os "clients" (usudrios) conectados (AUMONT et al., 2018). A figura Fig.(3)
mostra exemplos de publicagoes e consumos que podem ser intermediados via um servidor

MQTT. Neste projeto, a camada de comunicacao via protocolo MQTT é realiada através

do software Mosquitto MQTT (LIGHT, 2017).

Diferente do Mosquitto MQTT, o software Apache Kafka, um message broker
desenvolvido pela empresa LinkedIn e lancado em forma de cédigo aberto, é orientado
a distribuicao resiliente e de alta volumetria de dados, e possui suporte a paralelizacao
de brokers, persisténcia de dados, throughput alto e suporte a diversos tipos de clients
(GARG, 2013). Por ser distribuido, as mensagens podem ser armazenadas em um ou mais

brokers, onde a coordenacao de mensagens é feito através de uma instancia de Apache

3.3. SOFTWARES E FERRAMENTAS 24

Figura 3 — Exemplo de publicacao e consumo via MQTT

Refrigerator \ / -
BN T | Control panel :...(W:
1 ~ —»
Microwave B > I Lights
&[] < \
Tablet | \

Television /_ Smart
Appliances home:

Publisher Broker Subscriber

Fonte: AUMONT et al. (2018)

Zookeeper (BURNS, 2018). A figura Fig.(4) mostra exemplos de publicagbes e consumos

que podem ser intermediados via um servidor Apache Kafka.

Figura 4 — Exemplo de publicacao e consumo em brokers Kafka

Streaming Media

&

Mobile Devices

@/Kafka Producer Kafka Broker 2
loT devices / \

e
Bank Transfer

tream Processor Stream Processor

C -— [
Am Processor Stream Processor

Kafka Broker 3
Upstream
Applications Kafka Cluster Streaming Applications

Fonte: WU; SHANG; WOLTER (2020)

A quantidade de brokers que as mensagens sao replicadas é chamada de "fator
de replicacao", e é usada para provisionar resiliéncia e redundancia de mensagens em
aplicagoes que exigem extrema seguranca na entrega de mensagens. Ainda, para cada
broker, as mensagens sao inseridas em parti¢oes especificas, de forma que, no momento
de criagao dos tépicos, cada particao do tépico é mapeado para a particao respectiva dos
brokers no qual a mensagem seré replicada (GARG, 2013). Por exemplo, em um caso de
um cluster de 4 brokers, um tépico com fator de replicagdao e particionamento iguais a
2 e 10, respectivamente, pode ter a primeira particao do tépico atribuidas a particao 1
dos brokers 1 e 3, da segunda particao do tépico atribuidas a particao 2 dos brokers 2 e

4, e assim por diante. A figura Fig.(5) mostra demonstra o comportamento do fator de

3.3. SOFTWARES E FERRAMENTAS 25

replicacao e do particionamento.

Figura 5 — Fator de replicagao e particionamento

4 Multi Broker Kafka Cluster h

-
Broker 1
& LEME Topic Message
L |
¢
rf . .
; - ™, Consumers
Broker 2
A EE Topic
Producers B
Messags - R
s Broker 3
L 4 "’J a
al1 ddddddddd | Topic
E 3|2 3
b .
Wafka Topic with 4 Partition "__ - ™y
.. Broker 4
GRMHE Topic

b, .
- vy

Fonte: GARG (2013)

3.3.2 Esteira de processamento de dados

O modelo padrao de tratamento de dados é concebido conceitualmente com a ideia
de processamentos em batch: conjuntos de dados com volumetria pré-definida (bounded),
alta entropia e que, ao passar por um processo de transformacao, sao estruturados em
conjuntos que expressam maior valor de negdcio, o que é representado na figura Fig.(6a)
(AKIDAU; CHERNYAK; LAX, 2018). Porém, é comum que os dados de entrada nao
sejam fixos, mas sim incrementais (unbounded), o que implica em processos e esteiras de
tratamentos que operem sobre batchs incrementais (conhecidos também como mini-batch,

representado na figura Fig.(6b)) ou em streams (figura Fig.(6¢)).

As transformagoes feitas dependem diretamente do contetido e de como os dados
devem ser tratados, e podem ser as mais variadas possiveis. Usualmente elas sao trans-
formagoes do tipo orientado a elemento (element-wise, correspondéncia de registros de
1:1), de agrupamento (grouping, correspondéncia de de registros m : n) ou de composigao

(composite, correspondéncia de campos m : n) (AKIDAU; CHERNYAK; LAX, 2018).

Neste projeto, as camadas de transformacao sdo implementadas em stream e se

encontram em dois pontos. O primeiro, o qual faz uma pré-validacao dos dados gerados

3.3. SOFTWARES E FERRAMENTAS 26

Figura 6 — Paradigmas de processamento de dados.

(a) Transformagao de batch com entrada fixa (bounded)

AT <

e . . oo
() o a
o]
nonoBbOO pooooo
o, 0% %0 oooooo
o oooooo
= nu Dpo MapReduce e e
ST e oooooo
oo o gpo® o oooooo
= e Dooooo

S N e) TR

(b) Transformagcao de batch com entrada incremental (unbounded)

/--"-'_—‘—-.\ /—'_____‘N\
o a o o
oo un“ oo oooooo
oo e oooooo
8o oooooo
o g?%0® MapReduce oooooo
o o O p oooooo
oo o pco9ao ogooooo
o ae oooooo
o
— —

Biga LS o = = 4 =
unuunun Dnnﬂunu Dnuu“““u a _n a a
2% ° oo o nnng"u CIRC T o0 o ST | =l
o nuuunu o P0a0 o @000 o o
L - o 8g2 0 P? 0,000 g B o O

0 0o po%000 0 po® 000 0 gaP oo o
oo o oo =] oo o

Fonte: AKIDAU; CHERNYAK; LAX (2018)

pelos sensores, é feito via um script em Python que recebe os dados em um servidos MQTT
e envia-los aos topicos Kafka. O segundo é uma esteira de dados Nifi, que sera discutido em

maior detalhes a seguir. Toda a integracao é detalhada na segdo de Metodologia Sec.(4).

O Apache Nifi, originalmente lancado como Nlagra Flles, é uma solugao orientada
a manutencao e desenvolvimento de fluxos e esteiras de dados com uma tecnologia de
processamento em fluxo ("data in motion") (ISAH; ZULKERNINE, 2018). Alguns dos
principios que guiam o desenvolvimento do projeto sdo: i) garantia de entrega dos dados
consumidos e processados, isto é, o sistema é resiliénte & possiveis quebras; ii) priorizagao
de enfileiramento de eventos, assim como sistemas de mensageria; iii) armazenamento em

memoria dos eventos para disponibilizagao rapida (data buffering) (CHATTI, 2019).

Cada registro que entra no sistema é considerado um "arquivo", o qual possui um

3.3. SOFTWARES E FERRAMENTAS 27

contetudo e atributos (meta-dados). Esses arquivos sao chamados de "flow-files", ou seja,
arquivos que se encontram em fluxos. A cofiguracao dos fluxos é feita via uma interface
visual, onde cada processo (processor) é acionado em cadeia, e seguem caminhos especificos
dependento do status de execugdo (sucesso, falha, retentativa, ou saidas especificas).
Os processos podem ser agrupados no que se ¢ chamado de "process group", e esses
agrupamentos podem ser exportados como templates para modularizacao de fluxos. As
figuras Fig.(16), Fig.(17) e Fig.(18) demonstram algumas das esteiras desenvolvidas para

este trabalho.

3.3.3 Armazenamento de dados

Atualmente existem diversas maneiras de se armazenar grandes volumes de dados, e
a escolha mais adaptada da arquitetura e de seus componentes depende de diversos fatores
como consumo pelos usuarios, escalabilidade, performance e integrabilidade, possiveis
riscos, adaptabilidade, dentre muitos outros (MALASKA; SEIDMAN, 2018). Porém, é
cada vez mais recorrente uma arquitetura de dados organizacional refletir camadas de

data-lake, dados estruturados (bancos de dados relacionais) e dados nao estruturados

(bancos de dados NoSQL).

Cada uma dessas camadas serao discutidas a seguir, abordando os conceitos que
serao usados na modelagem da integracao dos servigos. Todas elas foram implementadas
em servigcos da AWS, como o S3, DynamoDB e RDS.

A alta volumetria, variabilidade e velocidade associado ao universo de Big Data,
combinado com a agilidade de projetos de analytics e a demanda por gerar valor a partir

dos dados a disposi¢ao acabam por impor novas necessidades de infraestruturas.

Neste contexto, emerge a ideia de data-lake: um macro-ambiente no qual todos os
dados, independente de sua origem ou de sua forma, sdo armazenados e acessiveis a uma
ampla gama de usuarios. O objetivo é oferecer ao negbcio a habilidade de se "servirem"
("self-service") de tais recursos de forma que ndo demandem ajudas de areas de tecnologia

e que consumam os dados de forma democratizada (GORELIK, 2019).

Um caso classico de uso de data-lake é o processo de limpeza e estruturacao de
dados. E usual realizar uma série de operacdes e transformacoes em cima dos conjuntos
que se dispoe a fim de se agregar valores de negdcio, e usualmente este processo se
chama "Extract, Transform, Load" (ETL) (VASSILIADIS; SIMITSIS; SKIADOPOULOS,
2002). Por finalidade de rastreabilidade e organizacao, é importante manter cada etapa de

tratamento de armazenados em diferentes niveis.

Existem diversas ferramentas associadas a um ambiente de data-lake. A mais famosa
¢ o Apache Hadoop, uma plataforma de armazenamento massiva, paralelizado e escalavel.

Muitas tecnologias e servigos oferecidos por provedores de nuvem possuem como base o

3.3. SOFTWARES E FERRAMENTAS 28

Figura 7 — Diagrama de relacionamento de um modelo star schema.

Customer Dimension Product Dimension
= —CIE
Key Price
13323 Robert Jones 12 Main 5t, Quenta, CA

RCA X11-2231 1999

12441 Mary May 1 Elvis P1, Remington, GA Sony 123-AB8 7.9

Transaction Fact
Order Line
o Item

443211 1 3343 13313 221

443211 2 3343 1313 12 4

|

Time Dimension

Fiscal
Year
3343 1/1/01 2000 4

3344 1/2/01 2000 4

Fonte: PETROV (2019)

Apache Hadoop, como o AWS Simple Storage System (AWS S3) e o Azure Blob Storage
(NARGESIAN et al., 2019).

Bancos de dados relacionais (Relational Database Management System, RDBMS)
sao softwares de manutencao de dados que ja se encontram estruturados e que usualmente
servem a alguma finalidade analitica ou de negocio. Os dados sao estruturados em tabelas,
e levam o termo "relacional" dado que tais entidades podem assumir relagoes entre si
através de chaves primarias (primary key) e chaves estrangeiras (foreign key) (PETROV,
2019).

As tabelas devem ser criadas e pré-adaptadas para hospedar os dados que chegam,
de forma que existem iniimeras maneiras de se modelar tais relacionamentos e entidades.
Um paradigma de modelagem muito usual é a modelagem dimensional, onde os dados se
encontram estruturados de tal forma a reduzir redundéncias (isto é, o mesmo valor escrito
em diversas linhas, colunas, tabelas e etc.) através do que se é chamado de "dimensdes",
ou seja, tabelas que sao cruzadas para se extrair uma determinada informagao sem a
necessidade de se replicar o mesmo conteiido em diversos lugares. Tabelas que possuem
relagoes diretas com diversas dimensoes seguem o que se é conceituado como "star schema'

(esquema "estrela") (PETROV, 2019), assim como demonstra o diagrama da figura Fig.(7).

Bancos de dados relacionais sao usualmente implementados, no contexto de apli-
cagoes organizacionais, em Data Warehouses (DW), isto é, ambiente de armazenamento
estruturados de dados que sao consumidos por equipes analiticas para a criacdo de re-
latorios e dashboards. Esses consumo ocorre através de queries, isto é, comandos escrito
em linguagem SQL (Structured Query Language) que executam uma dada chamada em
cima das tabelas mencionadas e retornam os dados correspondentes. Atualmente, com

a evolugao de diversas tecnologias de data-lake, ambientes DW deixaram de focar no

3.3. SOFTWARES E FERRAMENTAS 29

armazenamento global de informagoes e passaram a provisionar solugoes analiticas que
requerem dados extremamente organizados e estruturados, alimentados por multiplas

fontes e que reproduzem acuracia histérica (GORELIK, 2019).

Em contrapartida as bases RDBMS, existem bancos de dados que sdao orientados
ao armazenamento de dados nao relacionais, isto é, que nao possuem o mesmo uso que
dados estruturados. Esses bancos sdo amplamente conhecidos como NoSQL, e realizam
o armazenamento de diversos tipos de dados, estruturados em diversas formas, como
estrutura de documento (MongoDB e DynamoDB) ou de esquema chave-valor (Redis)
(Jing Han et al., 2011). Algumas das vantagens de usar bases nao relacionais sao baixo

custo, operagoes rapidas de leitura e escritas e flexibilidade de conteido (CATTELL, 2011).

3.3.4 Containers, aplicacoes virtualizadas e Docker

O conceito de virtualizagdo é comum no contexto de desenvolvimento, e usualmente
estd associado com praticas que permitem e promovem o isolamento de um software
abstraindo dependéncias que possam ou nao estar configuradas adequadamente na maquina
hospedeira (host). No universo de aplicagoes, é comum o uso da ferramenta Docker para
realizar virtualizagoes, onde cada instancia de um software virtualizado (chamado também
de servigo Docker) é contido em ambientes chamados "containers' (KROPP; TORRE,
2020). Cada unidade executével de um container é chamada de "imagem', a qual possui
como componentes a propria aplicacao, bibliotecas de dependéncia, variaveis de ambiente

e arquivos de configuragao.

Por mais similares que sejam a maquinas virtuais, os containers Docker abstraem
os recursos da maquina hospedeira através do moédulo runC, de forma que tais recursos
sao compartilhados diretamente com as instancias das imagens em execugao. Desta forma,
qualquer maquina que possua o Docker instalado é capaz de rodar os containers de
forma abstrata e exatamente igual ao ambiente em que foi desenvolvido, garantindo
flexibilidade, interoperabilidade dentre diferentes maquinas e ambientes (desenvolvimento
local ou nuvem) e escalabilidade (KROPP; TORRE, 2020). No contexto deste projeto,
BELLAVISTA; ZANNI (2017) desenvolveram uma prova de conceito de implementagao
gateways IoT via conteinerizacao da camada de middleware que, como resultado, promoveu

escalabilidade de desenvolvimento e orquestracao dindmica de atualizagos e configuragoes.

A unidade béasica de imagens Docker parte do que se chama "Dockerfile', isto é, um
arquivo que contém as instrucgoes de criagao do container. Com este arquivo, é possivel
compilé-lo (build) em uma imagem executdvel. O esquema de compilagao é baseado em
camadas, ou seja, cada comando contido no arquivo é uma camada que sera executada em
ordem, e a atualizacao de cada comando implica apenas na alteracao da camada respectiva.

E comum reaproveitar containers e imagens oficiais ja desenvolvidas de projetos conhecidos

3.4. AVICULTURA DE PRECISAO 30

Figura 8 — Diagrama de containers Docker e consumo de recursos do host.

Container 1 Container N

Application Application

Operating System

Fonte: AKIDAU; CHERNYAK; LAX (2018)

ao invés de desenvolve-los, o que, por padrao, é importado diretamente do repositorio

oficial (registry) do Docker, chamado de Docker Hub.

Aplicagbes usualmente exigem nao apenas um, mas diversos softwares em execu¢ao
simultinea, integrados por uma rede interna e com compartilhamento de volumes (dados)
(DUSIA; YANG; TAUFER, 2015). Desta forma, é usual realizar estas integracoes via o
software Docker Compose, uma ferramenta orientada a execuc¢do simultanea de diversos
containers Docker integrados e que se encontram definidos em um arquivo YAML (JANGLA,
2018).

Neste projeto, usamos o Docker Compose para definir os softwares que devem ser
executados e integrados em cada uma das camadas, sendo cada servico apontado para
arede de conexao Docker da camada. Em especifico, criamos a imagem do servico Python
a partir de um Dockerfile para que sejam instaladas as bibliotecas de dependéncia. Os

detalhes desta integracao serao explicados posteriormente.

3.4 Avicultura de precisao

O uso de IoT para monitoramento de estagdes de avicultura ja foi abordado em
diversos estudos na literatura. Um dos principais desafios é realizar o monitoramento
de ambiente, como temperatura e umidade, a fim de se manter as condi¢bes 6timas
para producdes de ovos e da avicultura. Ainda, com o uso de uma infraestrutura de
monitoramento, é possivel utilizar de algoritmos e métodos de aprendizado de maquina
para realizar a gestao eficiente de producao e alimentacao, deteccdo de anomalias e andlises

comportamentais, assim como mostra a figura Fig.(9).

A ONG "Humane Farm Animal Care DBA Certified Humane" disponibiliza em

3.4. AVICULTURA DE PRECISAO 31

Figura 9 — Exemplo de esteira de dados para aplicagoes de Inteligéncia Artificial em
estagoes de avicultura.

CLOUD SERVICE
'Esn-ltv':r,wentnl data Potential ge s srios Real-time analysis

and prediction
Liﬂ;;:‘:ﬂr‘;lum Poultry Abnormality ng.lr:‘h analyils
Ammaonia m"n"gpmm:_ | detection __ Ousbreak
R — Production Feed Bashanesoural . —
planning management anabysis -
=
Sound patterns
{Microphones) i
y l Data Management Platform
- s Data Layer Analysis ‘
Behavioral data management §° L Prediction
{Cameras) -
Pesture GUIDashboard/APIs for
Activity end user

REALTIME COMPUTING

Fonte: SINGH et al. (2020)

seu portal o acesso a diversas diretrizes e normas de cuidados de animais. Especificamente
se tratando de producao de aviculturas, a organizacdo elenca como fatores principais
associados ao ambiente i) a temperatura, que deve ser em média de 41°C; ii) a luminosidade,
que deve ser no minimo equivalente a 20 lux; iii) concentragao de aménia (nao deve exceder
25 p.p.m.), monoxido (no maximo 10 p.p.m.) e diéxido de carbono (menor que 3000
p.p.m.); iv) umidade relativa, que deve ser preferencialmente de 50 a 75%, e ventilagao de
ar (HUMANE FARM ANIMAL CARE, 2014). Outros fatores, como infraestrutura das
estagoes, alimentacao e hidratacao também sao apontados pela organizagao, porém, para
o presente projeto, usamos as métricas temperatura, umidade relativa, concentracao de

amonia e temperatura para desenvolver a prova de conceito da arquitetura de dados.

SINGH et al. (2020) propéem um modelo de arquitetura orientado a inteligéncia
artificial (IA), com a finalidade de prever possiveis doengas com base em pardmetros
sonoros, imagens e videos. J& DEBAUCHE et al. (2020) utilizam [A para examinar a
qualidade do ar a partir de métricas de concentracao de mondxido e didxido de carbono,

bem como a concentracao de amonia.

A respeito do impacto desses fatores, eles foram escolhidos por apresentarem grande
impacto no bem estar da avicultura. Por exemplo, é conhecido que a temperatura possui
influéncia sobre a qualidade de ingestao de nutrientes e da dieta das aves (CHARLES;
GROOM; BRAY, 1981). Ainda, aves que se encontram submetidas a concentragdes de
amoOnia acima de 25 p.p.m. contraem irritacoes nas membranas mucosas dos olhos e do
sistema respiratério (WATHES; KRISTENSEN, 2000). Contracao de doengas infecciosas
por insuficiéncia respiratoria também estao relacionadas a fatores como luminosidade e
umidade relativa do ambiente (XIONG et al., 2017).

3.4. AVICULTURA DE PRECISAO 32

Ao se tratar de arquitetura de dados, LASHARI et al. (2018) propoe um modelo
de monitoramento de estacoes de avicultura baseado em fog computing, assim como é
apresentado na figura Fig.(10). O nédo intermediador é um gateway, hospedado em um
Raspberry Pi, que desempenha o papel de intermediar os dados recebidos por sensores e
envia-los a uma unidade de processamento (esteira de dados). J4 RAJ; JAYANTHI (2018)
introduz uma camada de processamento entre a nuvem e os noédos de gateway, a qual é
hospedada em um servidor on-premise e é destinada a processar os dados recebidos pelos

gateways.

Figura 10 — Arquitetura de dados proposta por LASHARI et al. (2018).

5
Application ﬁ 0 2
Layer ' D
i Application]—

EE%E —
Data Processing “m: @@J @
= - o
i
Processing Unit]_

Gy () & R

[Ga teways |

C RN PP Y PHW
Sensing LEI‘g'Er'> @ ﬁ v

|| Sensors ||

Fonte: LASHARI et al. (2018)

Neste trabalho foi adotada a abordagem da camada on-premise, ou seja, integramos
os dados recebidos pelos gateways a softwares de mensageria e tratamento em stream,
hospedados em maquinas locais e dedicadas. Na secao de Metodologia Sec.(4) serao

apresentados os componentes da arquitetura.

3.4. AVICULTURA DE PRECISAO

Figura 11 — Arquitetura de dados proposta por RAJ; JAYANTHI (2018).

Poultry farm

QAs sensor microphone thiermal and RGH camara tharmal camera

hurnid ity sensor

distance sensor

ardunia uno with wifi module

01006
DI
[iFeei] - J‘j

sensor data video image audio file
frame

disease kdentification
on-site database

processing application
g N - Er
. on-site processing and filtering server
disease identifhcation hle archive server

processing central server

"
O

l : ! . ? i
: archiving
email and 5M5 device authentication file server procetd
SEVICes SETViCES
I T T 1
] 1 1]
admin dashboard and mobile atcess user

management portal

L B 0 q

Fonte: RAJ; JAYANTHI (2018)

34

4 METODOLOGIA

Nesta secao serao detalhados os passos seguidos para o desenvolvimento do estudo.
Em suma, eles compreendem duas grandes fases, que sao as etapas de desenvolvimento
geral e especifico. Na primeira, foram produzidos cédigos de base que provisionam a
integracgao de todos os servigos discutidos na se¢ao de Fundamentagao Tedrica (Sec.(3))
com a finalidade de servir a aplicagoes IoT que contenham as camadas de arquitetura
propostas neste estudo. Na segunda, os insumos gerados pela primeira etapa foram usados
para modelar um cenario de avicultura de precisao, a qual foi caracterizada por uma
modelagem de dados e de recursos (brokers e tépicos Kafka, nédos de gateway) para refletir

especificidades do cenario em questao.

4.1 Etapa geral: Modelagem de integracao de servicos

A arquitetura geral implementada neste estudo segue a representacao da figura

Fig.(12). Ela ¢ consituida de trés camadas principais:

e Gateway: camada localizada em cada um dos dispositivos de sistema embarcado
(e.g., Raspberry Pi), é encarregada por hospedar um servidor MQTT e um script
Python que realiza o consumo deste servidor, bem como a limpeza e validacao de

estrutura de dados gerados pela fonte;

e Regional: camada responsavel por receber em um cluster Kafka os dados validados
por cada nédo de gateway, bem como realizar, via NiFi, tratamentos, analises,
aglomeracoes e operacoes logicas com base no conteiido do dado. Por fim, envia os

dados & nuvem;

e Nuvem: camada que faz uso de servigos e ferramentas proprietarias (AWS), a fim
de prover armazenamento tanto em forma aglomerada (Batch) quanto em estrutura

de documento (tempo-real, Stream)

Para os niveis de gateway e regional, a integracao de todos os softwares foi vir-
tualizada via containers Docker, de forma que para cada camada foi escrito um arquivo
docker-compose.yml. Nesses arquivos sao definidas as redes de conectividade de cada um
dos servigos, que seguem a estrutura logica do diagrama apresentado na figura Fig.(13).
Desta forma, todos os nédos de gateway devem ter o servigco de Python com acesso a
rede externa da camada regional, assim como os dispositivos IoT devem ter acesso a rede

externa do gateway.

4.1. ETAPA GERAL: MODELAGEM DE INTEGRACAO DE SERVICOS

Figura 12 — Representacao da arquitetura geral.

D) Nuvem
d
NoSQL (tempo real]\// Parquet (batch)
o AWSDB
ynamo /\
f f
a Regional
/ Data Collection \
i
d Mensageria:
Apache Kafka
Broker 1 Esteira de
dados:
N Broker 2 Apache Nifi
Gateway
@ Gateway
ot Coleta de dados / pre-tratamento
Servidor -
MQTT:] Processamento:
Mosquitto Python
Fonte de dados
/ Dispositivos \

/

Fonte: Autor

35

4.1. ETAPA GERAL: MODELAGEM DE INTEGRACAO DE SERVICOS 36

Figura 13 — Diagrama de conexoes de servi¢os Docker.

‘docker-compose.yml h regional’docker-compose.yml Il

Broker 1

Conexao ponte

(bridge)

+——— Rede externa

Mosquitto Zookeeper

e i
loT-Data-Simulator |« nateway_network
|
i
A
|

Python / NiFi

;
1
H
; i
‘-« Tegional_network
7
]

Fonte: Autor

Para a geracao dos dados sintéticos, foi utilizada a aplicacdo loT-data-simulator
(IBA-GROUP-IT, 2020), a qual suporta a configuragao de diversos sensores, modelagem
do esquema dos dados, conexao com aplicagoes de mensageria e execucao de diversas
sessoes simultaneamente. Para cada sessao, é possivel salvar um arquivo de extensao . json
que detalha a configuracao da sessao, o esquema de dados, sensores utilizados, tépicos

publicados e a frequéncia de sinal.

Todo o cédigo foi desenvolvido e publicado no GitHub, e se encontra atualmente
no repositério igor-yamamoto/tcc_proj (YAMAMOTO, 2021). Os arquivos referentes
as camadas de gateway e regional estao, respectivamente, nos diretérios gateway/ e
regional/. Os arquivos de configuracao do servidor MQT'T e a credencial de acesso, bem
como o template de base da aplicacao loT-data-simulator, estao todos no diretério gateway/
templates/. O tempate NiFi se encontra no diretério regional/templates/. O diretério
examples/ é destinado para armazenar usos e aplicagoes dos modelos desenvolvidos, e,

para este projeto, foi usado para a etapa de desenvolvimento especifico.

A tabela Tab.(1) apresenta detalhes de especificagoes de cada uma das tecnologias

utilizadas nesta etapa.

4.1.1 Gateway

Em cada noédo de gateway estao hospedados os servigos Mosquitto e Python. O
servico de Python é orientado ao processamento das mensagens enviadas ao servidor
MQTT, e portanto a sua execucao foi configurada como dependente deste servigo. Ainda,
em casos de queda do sistema, a politica de reinicializagao foi configurada para acontecer

sempre que o servigo finalizar a execugao de forma inesperada (restart: always).

As configuragoes dos brokers MQTT em cada nédo sao definidas em arquivos

4.1. ETAPA GERAL: MODELAGEM DE INTEGRACAO DE SERVICOS 37

Tabela 1 — Especificagoes de softwares utilizados na implementagao da etapa geral.

Escopo Ferramenta Imagem docker Rede conectada
Fonte de IoT-data- gateway_network
dados simulator (externo)
4
Mosquitto amd64/ gateway network

eclipse-mosquitto

Gatewa
Y gateway network,

amd64/ .
Python) . regional network
python:3.9.7-alpine3.14 (externo)

Zookeeper cpfz%%?{léilgtelsg./ 9.0 regional network
Regional Kafka sgigﬁ?én; {) regional network
Nifi n?lﬁ)éldiz/ 9 regional network

AWS S3 - -

Nuvem AWS
DynamoDB))

que se encontram no caminho gateway/templates/mosquitto/mosquitto.conf, e sao
mapeados diretamente aos arquivos de configuragdo das imagens Docker (mosquitto/
config/mosquitto.conf). Neste arquivo também é feito a configuragdo de seguranca,
como permissoes e credenciais de acesso (mapeando o arquivo gateway/templates/

mosquitto/mqtt_passwd), configurado para este exemplo o usudrio "tcc_test'e a senha
"12345".

Para o Python, a subida do servico é diferente em relacao aos demais, pois nele
constroi-se um container (build apontando ao caminho gateway/builds/python/) baseado
na imagem python:3.9.7-alpine3. 14, ja instalando as dependéncias definidas no arquivo
code/requirements.txt e iniciando o consumo e producdo das mensagens (arquivo
code/scripts/mqtt_consumer.py, método run). Para este servigo, as bibliotecas de

dependéncia sao:

e paho-mqgtt: biblioteca de conexao, consumo e producao de mensagens em brokers
MQTT

e python-decouple: médulo de leitura e uso de varidveis de ambiente. Util para

desenvolvimento, testes e manutengao de hiperparametros e/ou credenciais

4.1. ETAPA GERAL: MODELAGEM DE INTEGRACAO DE SERVICOS 38

e kafka-python: biblioteca de conexao, consumo e producao de mensagens em brokers
Kafka

Além do script de consumo, sao copiados também para a imagem as classes de conexao com
brokers (/code/scripts/connectors.py) e o pipeline de tratamento (/code/scripts/
pipeline.py). Os mddulos foram escritos para que, preferencialmente, qualquer configu-
ragdo de variavel fosse definida no arquivo de variaveis de ambiente /code/scripts/.env
e qualquer légica de tratamento dos dados consumidos fossem modeladas a partir do
método main do arquivo de pipeline. Para esta etapa de desenvolvimento, o brokers de
transformacao escrito realiza apenas a validagao do esquema de dados em json, mas é
possivel integrar qualquer logica de tratamento de forma que ele tenha como resultado a

mensagem em formato de texto (string).
A estrutura l6gica do servigo Python segue o fluxograma da figura Fig.(14).

Figura 14 — Fluxo légico do servico Python.

main

Subida de docker-
compose
env

Varidveis de ambiente

hJ

Inicializagao de
objetos de conexao

Y

MQTT e Kafka
|
/ connectors l
Mensagem MQTT
/ .| Consumo de broker
-] MQTT

|

pipeline l

Execucao de pipeline
de transformagao

v

Publicagao em
topicos Kafka

O desenvolvimento deste projeto foi baseado nas imagens Docker apresentadas

Fonte: Autor

na tabela Tab.(1). Para a camada de gateway, todas estao disponiveis no DockerHub

(registry oficial do Docker), compiladas tanto em arquiteturas padroes (amd6/, orientado

4.1. ETAPA GERAL: MODELAGEM DE INTEGRACAO DE SERVICOS 39

a processadores Intel), quanto arquiteturas arm64 e arm32 (arqueturas presentes em

processadores de raspberry, como o Broadcom BCM2711 SoC).

4.1.2 Regional

A camada regional é constituida de um cluster Kafka e uma esteira NiFi. Esta
camada é destinada para ser usada de forma unica e centralizada, estando todos os
gateways conectados a ela. Para tal, a implementacao de qualquer especificidade deve ser
modelado dentro do arquivo regional/docker-compose.yml (quantidade de brokers do

cluster, quantidade de nédos do servigo Zookeeper, arquivo de configuragao do NiFi, etc.).

Para a etapa geral, foi configurado apenas um broker Kafka orquestrado pelo
Zookeeper. A porta mapeada para comunicacdo com o Zookeeper foi a porta padrao, i.e.,
2181. Scripts bash foram criado para auxiliar na criacao de topicos implementados neste

projeto, e se encontram no diretério regional/scripts/.

Figura 15 — Esteira de dados NiFi geral

loT Stream - test

0 0 4 0 0 0
Queued 0 (0 bytes)
In 0 (0 bytes) — 0

Read/Write 0 bytes [D bytes
Cut 1 -0 (0 bytes)

0 0 0 070

From out

Cueued 0 (0 bytes)

/_\——.

To in To in
Queued 0 (0 bytes) Queued 0 (0 bytes)
Batch - 53 Stream - DynamoDB
1] 0 5 0 1] 0 0 0 3 0 0 0
Cueued 0 {0 bytas) Cueuad 0 (0 bytes)
In 0 (0 bytes) — 1 In 00 bytes) =1 5 mi
Read/ Write 0 bytes / 0 bytes Read/Write 0 bytes / O bytes 5 mil
Ot 0 — 0 (0 bytes) Ot 0 — 0 (0 bytes) 5 mi
0] 0 0>o0 0 0] 0>0

Fonte: Autor

O template de todos os processos NiFi estdo apresentados nas figuras Fig.(15),

Fig.(16), Fig.(17) e Fig.(18). Ele possui trés processos principais:

4.1. ETAPA GERAL: MODELAGEM DE INTEGRACAO DE SERVICOS 40

Figura 16 — Esteira de consumo Kafka

- Consumekafka
o ConsumeKafka_1_01.13.2

org_apache.nifi - nifi-kafka-1-0-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Cut 0 (0 bytes) 5 min
Tasks/Time 55/00:00:03.651 S min
Name success I
Queued 0 (0 bytes)
¥
— Extrair timestamp e guid
[-»__- EvaluateJsonPath 1.13.2
org.apache.nif - nifi-standard-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Cut 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min
MName matched |
Queued 0 (0 bytes)
v
— Extrair Time To Live
[-»—_- UpdateAttribute 1.13.2
arg.apache_nifi - nif-update-attribute-mar
In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5min
Cut 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

Name success
Queued 0 (0 bytes)

¥
L—D out
Fonte: Autor

e Consumo de tépicos Kafka: processo destinado a consumir todos os eventos regis-
trados no tépico test-topic (figura Fig.(16)). A partir do conteido da mensagaem,
é feito também uma extragao dos valores de identificador inico global (GUID) do

dispositivo, bem como o contexto do evento (nesta etapa, configurado como "teste");

e Geraracao de arquivos aglomerados: processo destinado ao servico AWS S3
(figura Fig.(17)), no qual os dados coletados sao transformados para estrutura posici-
onal (formato .csv), aglomerados, transformados em arquivos de estrutura colunar

(formato .parquet) e gravados no bucket test-tcc-bucket particionadas por data

4.1. ETAPA GERAL: MODELAGEM DE INTEGRACAO DE SERVICOS

[=

MHame failure
Cuewsd 0 [0 bytes)

Figura 17 — Esteira de ingestao S3

I:D__Ihin
[

Queued @ (0 bytes)

'

= p ComvertRecord

— ConwertRecord 1.13.2
org apache.nifi - ni-siandand-nar
e o 00 bytas) St
Read/Write 0 bytes /0 bytes 31
Chat 00 bytas) St
Tasks/Time 0/ (0-00-00. 000 3T

|
Hame success
Queued @ (0 bytes)

=] p MergeRecord
o MergeRecord 1.13.2
org apache.nifi - ni-siandand-nar
In 010 bytas) St
ReadWrite 0 bytes ! 0 bytes 31
Chat 00 bytas) St
Tasks/Time 95 f00:00:00.076 31
|

Hame merged
Queued @ (0 byies)

=~ | = Extrair hora
e Updatedtiribute 1.13.2
org.apache.nifi - nf-updeie-atibute-nar
In 00 bytas) St
ReadWrite 0 bytes ! 0 bytes 31
Chat 00 bytas) St
Tasks/Time 0/ (0-00-00. 0040 31
|

Hame success
Cueued 000 bytes)

L
=] p PutS30bject
e Put330bject 1.13.2
org apache.nii - nf-aws-nar

In 010 bytas) St
ReadWrite 0 bytes ! 0 bytes 31
Chat 00 bytas) St
31

Tasks/Time 0/ (0-00-00. 000

Hame failure
Queued @ (0 bytes)

v

’

Fonte: Autor

41

e hora (caminho test-tcc-bucket/test/date=${yyyy-MM-dd}/hour=${HH}, onde

${yyyy-MM-dd} e ${HH} representam a data e a hora, respectivamente);

e Gravacgao de eventos em tempo real: processo destinado ao servico AWS Dy-

4.1. ETAPA GERAL: MODELAGEM DE INTEGRACAO DE SERVICOS 42

Figura 18 — Esteira de ingestao DynamoDB

Queued 0 (0 bytes)

!

Reestruturar Payload

JoltTranstormJS0ON 1.13.:

org.gpachenifi - nifr-standard-nar
In 0 {0 bytes) 5 mir
Read/Write 0 bytes /0 bytes 5 mmir
Ot 0 (0 bytes) 5 mir

Tasks/Time 0/ 00:00:00.000 5 mmir

Name success
Cueued 0 (0 bytes)

¥

PutDynamoDB (test)

PutlynamolE 1.

org.gpachenifi - nif-ews-nar
In 0 (0 bytes) 5 mir
Read/Write 0 bytes /0 bytes 5 mmir
Ot 0 {0 bytes) 5 mir

Tasks/Time 0/ 00:00:00.000 5 mmir
l

Name failure
Queued 0 (0 bytes)

¥

Fonte: Autor

namoDB (figura Fig.(18)), onde cada evento é tratado para armazenar o campo
timestamp_ttl, o qual marca a data-hora de expiracdo do evento na base (configu-
rado, para este projeto, como um dia a partir do momento de geracao do evento) em
formato uniz time (quantidade de segundos a partir to tempo epoch, definido como
01/01/1970, 00:00:00), e entdo grava o evento na tabela DynamoDB test-table.

Para a execugao das tarefas mencionadas, foram configurados controladores de
servigos, que sao servicos compartilhaveis entre miltiplos processos. No contexto deste
projeto, foram configurados os controladores apresentados na figura Fig.(19), que sao de
conversao e leitura de esquema de dados (CSVReader, CSVRecordSet Writer, JsonTreeRea-
der e ParquetRecordSet Writer, todos da versao 1.13.2), assim como um de configuracao de
credenciais de acesso a AWS (AWSCredentialsProviderControllerService 1.13.2).

4.1. ETAPA GERAL: MODELAGEM DE INTEGRACAO DE SERVICOS 43

Figura 19 — Controladores de servigos NiFi usados no projeto

Name « Type
= AWSCredentialsProviderControllerService AWSCredentialsProviderControllerService 1.13.2
& CSVReader CSVReader 1.13.2
& CSVRecordSetWriter CSVRecordSetWriter 1.13.2
= JsonTreeReader JsonTreeReader 1.13.2
& ParquetRecordSetWriter ParquetRecordSetWriter 1.13.2
Fonte: Autor
4.1.3 Nuvem

Os servigos utilizados da nuvem foram S3 e DynamoDB, do provedor AWS, assim
como apresentado na figura Fig.(20). Eles sao destinados para fazer o armazenamento de
dados aglomerados (data-lake, batch) e em tempo real (NoSQL, stream), respectivamente.
A configuracao foi feita de forma padrao, ou seja, da maneira recomendada pela propria
AWS, exceto para as tabelas DynamoDB, onde foi configurado o mapeamento de um

atributo de expiracao (time to live, TTL), assim como mostra a figura Fig.(20b).

E vélido mencionar também que, para a etapa especifica, além dos servicos S3 e
DynamoDB, foi usado o AWS RDS para hospedar um banco de dados Postgres e entao
possibilitar consumir os dados de forma analitica em um Dashboard. Maiores detalhes

serao discutidos na préxima secao.

Figura 20 — Detalhes de servigos AWS S3 e AWS DynamoDB

(a) Detalhes do AWS S3

test-tcc-bucket .

Objects Properties Permissions Metrics

Bucket overview
AWS Region Amazon Resource Name (ARN) Creation date

South America (5o Paulo) sa-east-1 amawsis3istest-tec-bucket October 16, 2021, 15:23:53 (UTC-03:00)

(b) Detalhes do AWS DynamoDB

test-table ==
Overview Indexes Monitor Global tables Backups Exports and streams Additional settings
General information
Partition key sortkey Capacity mode Table status
device_guid (String) timestamp_ttl (Number) Provisioned @ Active
@ No active alarms

Indexes DynamoDB stream Point-in-time recovery (PITR) Time to Live (TTL) info
0 globals, 0 locals © pisabled © pisabled ® Enabled
Replication Regions Encryption Date created
0 Regions Owned by Amazon October 16, 2021, 15:16:03

(UTC-03:00)
‘Amazon Resource Name (ARN)
t-1:7755097: ~table

4.2. ETAPA ESPECIFICA: MODELAGEM DE EXPERIMENTO CONDUZIDO 44

4.2 Etapa especifica: Modelagem de experimento conduzido

Com os insumos gerados na primeira etapa, foi modelado um experimento orientado
a avicultura de precisao. Nesta subse¢ao, serao apresentados os detalhes desta modelagem,
e as principais especificades de arquitetura. Em suma, o experimento consiste de duas
estacoes de monitoramento, denominadas por A e B, na qual para cada uma é atribuido N
sensores e um gateway. O cluster Katka foi configurado, desta vez, com trés brokers, sendo
os topicos dividos por tipo de métrica levantada pelos sensores (chamado aqui também
de "contexto"). O diagrama da figura Fig.(21) apresenta a estrutura légica de todos os

softwares usados nesta arquitetura.

Todos os arquivos referente a esta etapa se encontram no diretério examples/
avicultura/. Os arquivos de template do simulador, bem como configuragoes dos gateways,
se encontram nas pastas gateway-A/templates/ e gateway-B/templates/ para os ga-
teways A e B, respectivamente. Scripts bash de criacao de tépicos Kafka se encontram em

regional/scripts/, e o template da esteira NiFi se encontra em regional/templates/.

4.2.1 Dados sintético, modelagem e especificacoes

De acordo com o que foi apresentado na secdo Fundamentagao Tedrica (Sec.(3)),
alguns dos principais fatores que possuem influéncia sobre o bem estar de uma cultura
de aves s@o temperatura, concentracao de amoénia, umidade e luminosidade (HUMANE
FARM ANIMAL CARE, 2014). Existem diversos dispositivos que fazem o sensoriamento
de tais condigoes, onde o conteido e a frequéncia de sinal é usualmente modelado por
microcontroladores. Para este experimento conceitual, as caracteristicas de cada tipo
de sensor foi modelado de acordo com as informagoes da tabela Tab.(2). Nela também
é apresentada a quantidade de cada um dos sensores presentes para cada estacao de

monitoramento.

Tabela 2 — Especificagoes de sensores principais modelados no experimento de caso.

Tipo de sensor Frquéncia de sinal Faixa de valores Qntd. A Qntd. B
Temperatura 1 minuto 37 ~ 40 (°C) 3 4
Concentracao de Amonia 30 segundos 5~ 7 (p.pm.) 4 5
Umidade relativa 5 minutos 60 ~ 65 (%) 3 4
Luminosidade 5 minutos 25 ~ 30 (lux) 2 3

Fonte: HUMANE FARM ANIMAL CARE (2014)

O conteudo do sinal emitido por eles é estruturado em um esquema de chave-valor

(json), e seguem estrutura comum, que é constituido dos seguintes campos:

e device_guid: texto de identificador tinico do dispositivo

4.2. ETAPA ESPECIFICA: MODELAGEM DE EXPERIMENTO CONDUZIDO

Figura 21 — Representacao da arquitetura integrada para o caso estudo.

Google data studio

"
|

45

Tabelas NoSQL -
DynamoDB

Nuvem

Dados agregados - 83

‘ados estruturados - RD:
(Postgres)

Regional

Data Collection

Mensageria:
Apache Kafka

Stram process:
Apache Nifi

On-Prem Gateway

Gateway A

®

Coleta de dados / pré-tralamento

Mosquitio MQTT

Stram process:
Pythan

Gateway B

Coleta de dados / pré-tralamento

-Ea

a:
Mosguitto MQTT

Stram process:
Pythan

Fonte de dados

Data Source - Estagdo A

\

N 4

Data Source - Estagdo B

Ki

L Aménia

Dispositivo 1
Dispositivo 2
Dispositivo 3

Dispositivo 1 Dispositivo 1

Dispositiva 1 . ey N -
SR Dispositivo 2 Dispositivo 2

Disposiivo 2 Dispositivo 3
ispositiva Dispositivo 4

Ki

Dispositivo 1
Dispositivo 2
Dispositivo 3
Dispositivo 4

Ambnia

Dispositivo 1 Dispositivo 1 Dispositivo 1
Dispositivo 2 Dispositivo 2 Dispositivo 2
Dispositivo 3 Dispositivo 3 Dispasitivo 3
Dispositiva 4 Dispositivo 4
Dispositivo 5

_/ \

/

Fonte: Autor

e guid: texto de identificador tinico do sinal

e timestamp: nimero inteiro de marcador do momento de geragao do sinal, em formato

uniz time

e context: texto de classificador do tipo de sensor

e Valor de medida: niamero inteiro de valor da medida do sensor. Nome do campo

é dependente do tipo de medida (e.g., se temperatura, entdo campo de medida é

temperature)

N O Ot s W N

4.2. ETAPA ESPECIFICA: MODELAGEM DE EXPERIMENTO CONDUZIDO 46

Cédigo 4.1 — Exemplo de sinal gerado por um sensor de temperatura.

{
"device_guid": "001",
"guid": "1b878216-2b66-45d7-97d3-£859233ae85e",
"timestamp": 1634484382,
"context": "temperature',
"temperature": 25
}

4.2.2 Gateways e pré-tratamento de dados

Para cada uma das estacbes de monitoramento foi configurado um gateway, de-
nominados gateway-A e gateway-B. Em cada um deles foi criada uma rede de conexao
interna, onde os servigos de Python se conectam a rede da camada regional via conexao

externa, assim como demonstra a figura Fig.(22).

Figura 22 — Diagrama de redes dos servigos Docker para estudo de caso

(gateway-a/docker-com pose.yml'l regional’docker-compose.yml Il

Conexao pente
(bridge)

mosquitto-a 4——— Rede externa

Zookeeper

Broker 1

gateway-a_network

Broker 2

Broker 3

python-a ||

loT-Data-Simulator

: i

H |

H 1

H |

H |

H |

H |

H |

H 1

H |

H 1

H |

= ’region al_network

1
|

galeway-twdocker—compose.ymlB

mosquitto-b

gateway-b_network

python-b /

NiFi

Fonte: Autor

A esteira de tratamento do Python é semelhante a desenvolvida na primeira
etapa, acrescentando apenas um novo processo que realiza a publicacao no tépico Kafka

devices-dump das mensagens que nao ocorre éxito no mapeamento de contexto.

4.2. ETAPA ESPECIFICA: MODELAGEM DE EXPERIMENTO CONDUZIDO 47

4.2.3 C(Cluster Kafka e esteira de dados Nifi

O Cluster Kafka foi configurado com trés brokers, denominados de broker-a, broker-
b e broker-c, com portas mapeadas a 29091, 29092 e 29093, respectivamente. Todos eles

apontam a um unico orquestrador Zookeeper, pela porta 2181.

Os tépicos no nivel regional foram separados por contexto, a fim de se simplificar
as operagoes logicas na esteira NiFi. No total sao 5 topicos distintos: devices-temperature,
devices-ammonia, devices-luminosity, devices-humidity e devices-dump. Todos eles foram
criados com fator de replicagao de 2 nédos e 10 particoes cada, e podem ser iniciados
diretamente através do script bash de criacao regional/scripts/kafka_create_topic.

sh.

Exceto ao tépico devices-dump, todos as mensagens sao salvas tanto em batch
quando em stream. Para cada topico Kafka, é configurado um processo como é apresentado
na figura Fig.(16), ¢ a esteira resultante é apresentada na figura Fig.(23). Uma mudanga
adicional foi feita sobre o processo de gravacao em tabelas DynamoDB, onde foi criado

para cada tabela um processo separado, assim como demonstra a figura Fig.(24).

Figura 23 — Esteira geral

loT Stream - ammonia loT Stream - temperature
00 p»a4 HO AD 0 0 0Or4imO 0]
OQueued] Queued 0(0b:

in o 5) =0 0(0 by
Read/Write 601 bytes / 601 bytes Read/Write 420 bytes / 429 bytes
Out 1—4 (601 bytes) Qut 13 (420 bytes)

0 %0 Q000720 00000020
From out From oan
Queued 0 (0 bytes) Queued 0 (0 bytes)
leT Stream - dump loT Stream - humidity loT Stream - luminosity
0 0Or4 B0 A0 F0 0 0»d4 =0 0 0 0 0rd4mo 0 0
Queued

Queued 00 bytes) Queued 00

In In 00 bytes) ~ 0 S In o0 -0
Read/Write 0 bytes /0 bytes l Read/Write 274 bytes / 274 bytes Read/Write 141 bytes / 141 bytes
Out 1= 00 bytes) Out 12 (274 bytes) Qut 11 (141 bytes)
0 %0 G000 20 0 0000020 0 %0 Q000720
From out From out
Queued 0 (0 bytes) Queued 0 (0 bytes)

\/

.-—-"_—--—-‘--—_-‘_-_“‘-———

To in To in

Cuenad 15 (2 14KE] Queued 0 {0 bytes)
Batch - 53 Stream - DynamcDB
1] 0 0 5 [i] [i] 0 0 7 [i] [i] (1]
Etpmient Queued Queued 0 (0 bytes)
To in
P In In
Queued 0 (0 bytes Read/Write 0O bytes /0 bytes Read/Wiite 1.41KB/1.59 KB
out 00 (0 bytes) out 0 0 (0byes)
0 0 0 020 0 0G0 020

Fonte: Autor

4.2. ETAPA ESPECIFICA: MODELAGEM DE EXPERIMENTO CONDUZIDO 48

Figura 24 — Esteira para salvar em tabelas DynamoDB

Queued 0 (0 bytes)

Reestruturar Payload
= o
arg.apache.aif - nifstandard-na
In 11(1.55KE)
Read/Write 1.55KB/1.74KB
Out 11(1.74KE)
Tasks/Time 11/00:00:00.053
1
Name success
Queued 0 (0 bytes)

L4
RouteOnAttribute
touteOnAt 1.13.2
arg apache.nif - ifstandard-na

In 11(1.74KB)

Read/Write 0 bytes/ 0 bytes

Cut 11(1.74KB) 5m
Tasks/Time 11/ 00:00:00.028 S \
-~ ST
Name ammonia Name temperature Name luminosity Name humidity
Queued 0 (0 bytes) Queusd 0 (0 bytes) Queued 0 (0bytes) Queued 0(0 bytes)

PutDynamoDB (ammonia) PutDynamoDB (temperature) PutDynamoDB (luminosity) PutDynamoDB (humidity)

1amoDB 1.13. itDynzmol 3 JynamoDB 1.13 ynamoDB 1.13.
arg.apachanifi - ifiaws-nar crg spachenif - if-awsnar

In 4 tes) 5 In 3 (483 bytes) 5 In 2(318 bytes)

(673 bytes) ytes) I i

Read/Write 0 bytes / 0 bytes 5 Read/Write 0 bytes/ 0 bytes 5 Read/Write 0bytes/ 0 bytes : i

Out 0 (0 bytes) 5 out 0 (0 bytes) 5 out 0(0 bytes) 5 mir i

Tasks/Time 4/00:00:00.364 5 Tasks/Time 3/00:00:00.236 sm Tasks/Time 2/ 00:00:00.252 S mir r
Name failure Name failure Name failure Name failure

Queued 0 (0 bytes) % ﬁﬁi‘/// Queued 0 (0 bytes)

Fonte: Autor

424 Armazenamento de dados em Stream e Batch

O armazenamento em batch e stream foi particionado em contexto, assim como
os topicos Kafka. Os arquivos parquet foram salvos no bucket iot-stream-tcc, todos
particionados por data e hora. As tabelas do AWS DynamoDB foram configuradas da
mesma maneira descrita na etapa geral, e levam os nomes 7ot-stream-ammonia, iot-stream-

humidity, iot-stream-luminosity e iot-stream-temperature.

Além de tais servicos de armazenamento, foi usado também o banco de dados
Postgres SQL para armazenamento de dados estruturados. Para cada contexto foi criada
uma tabela, chamadas de tabelas fatos, onde todas elas consomem uma tabela uma
Unica tabela, chamada de dimensao, a fim de se resgatar informacoes dos dispositivos
da base. No total, as tabelas criadas foram ft_ammonia, ft_humidity, ft_luminosity,
ft_temperature e dm_device, todas sobre o esquema iotdb. O diagrama da figura Fig.(25)
resume o relacionamento entre as tabelas, bem como os campos, esquema e nulabilidade
de cada uma. Esta base foi usada para alimentar um Dashboard do Google Data Studio,
sumarizando as métricas recebidas dos dispositivos. Detalhes deste painel sera discutidos

em maiores detalhes na segao de Resultados Sec.(5).

4.2. ETAPA ESPECIFICA: MODELAGEM DE EXPERIMENTO CONDUZIDO 49

Figura 25 — Diagrama de tabelas no banco de dados Postgres, esquema iotdb

& guid

device_guid bpchar(e)

context bpchar(30)

value floata

timestamp int4 NOT NULL
4]

& guid
device_guid bpchar(6)
context bpchar(30)
value loate | &= jotdb.dm_device
=S E & device_guid bpchar(e
working_station bpcha
context

; name
& guid

device_guid bpchar(s

context bpchar(30)
value floats
timestamp int4 NOT NULL

&= iotdb.ft_temperature
& guid bpchar(40) NOT NULL
device_guid bpchar(6) NOT NULL
context bpchar(30)
value floats
timestamp int4 NOT NULL

Fonte: Autor

50

5 RESULTADOS

Nesta secao serao apresentados os principais resultados obtidos do estudo realizado.
Nele constam os resultados das integragoes dos softwares, andalise do cluster Kafka, bem

como o consumo e a disponibilizacdo dos dados na nuvem em formato de dashboard.

5.1 |Integracao de servicos

5.1.1 Gateway

Os testes dos gateways foram realizados através de comandos de execugao sobre o
container Docker do servico Mosquitto. Para garantir, em um primeiro momento, que as
mensagens estavam sendo recebidas pelo servidor, e portanto passiveis de serem consumidas
por demais servigos, foi realizada a subida da imagem, o consumo de um topico de teste
chamado test message e entdo a publicacdo de mensagens. As linhas de codigo C6d.(5.1)
e C6d.(5.2), escritas em linguagem bash, foram usadas para realizar o consumo e a produgao
de mensagens, respectivamente. A imagem Fig.(26) mostra o resultado da execugao de
tais comandos em um terminal shell, acompanhado logo abaixo dos logs de execucao do

comando.

Cédigo 5.1 — Comando de consumo de tépicos mosquitto MQTT

docker—compose exec mosquitto \
mosquitto_sub \
—1i test—consumer \
—h localhost \
—t "devices" \
—u tcc__test \
—P 12345

Cédigo 5.2 — Comando de producao em topicos mosquitto MQTT

docker—compose exec mosquitto \
mosquitto__pub \
—1i test—producer \
—h localhost \
—t "devices" \

—m ’this is a test message’ \

5.1. INTEGRACAO DE SERVICOS 51

—u tcc__test \
—P 12345

Figura 26 — Execucao de consumo e publicagoes de mensagens no topico "devices". A
esquerda a publicagdo de mensgaens e a direita o consumo, bem como o
resultado de publicacao.

-compose mosquitto \

quitto_
1 test-consumer %
localhost
"devices" \
'this is a test message' \ tcc_test \
tcc_test 12345
12345 this is a test message

Fonte: Autor

Cédigo 5.3 — Logs de execucao de publicacao no topico "devices'

1634691102: New client connected from 127.0.0.1:40850 as
test—consumer (p2, cl, k60, u’tcc_test’).
1634691108: New connection from 127.0.0.1:40852 on port 1883.
1634691108: New client connected from 127.0.0.1:40852 as
test—producer (p2, cl, k60, u’tcc_test’).
1634691108: Client test—producer disconnected.

A recepcgao das mensagens pelo servico Python foi testada da mesma maneira,
isto é, através da subida do servigo, da execugao do comando Céd.(5.2) e da verificagao
dos logs produzidos pelo servigo. Os resultados sao apresentados na figura Fig.(27a). A
mensagem Message 'this is a test message’ coudn’t be serialized as json object. se deve ao
fato que o dado de entrada nao é uma mensagem do tipo documento (json), o que nao

acontece quando ¢é enviado a mensagem {"device_guid": "this is a test message"}
(figura Fig.(27b)).

Figura 27 — Integracdo de servidor MQTT e Python. A esquerda as publicacdes e & direita
os logs.

(a) Consumo do tépico "devices" pelo servigo Python.

y (ft/results®) » docker-compose exec mosquitto \ | [n | Received this is a test message from devices topic
| Message 'this is a test message' coudn't be serialized as json object.

mesquitto pub \

-1 test-producer \

-h ost \

-t vices" \

-m is is a test message' \
est \

(Tt/results*) » docker-compose exec mosquitto \ N Cannot stablish connection to topic test-toplc at broker:2991.
mosgquitto 1883
mosquitto_pub \ n C d to MQTT Broker
-i test-producer \
\

guid": "this is a test message" } from "devices® topic
is is a test message"}
to kafka topic test-topic

5.1. INTEGRACAO DE SERVICOS 52

E possivel notar, a partir das figuras Fig.(27a) e Fig.(27b), que através da combi-
nacao de um servidor de protocolo MQTT e de um script Python, operacoes légicas sao
possiveis de serem feitas sobre as mensagens recepcionadas dos sensores em tempo real. De
fato, é possivel, através do arquivo requirements.txt, definir qualquer pacote de Python
que ele sera instalado no momento de construcao da mensagem. Cautela deve ser tomada
na escolha de tais pacotes dado que existem fatores, como capacidade de processamento e
armazenamento de dados, que podem impactar o desempenho em geral. Ainda, a qualidade

de cédigo possui gigante influéncia sobre a performance do servigo.

5.1.2 Regional

Da mesma forma que para os servidores MQTT, o cluster Kafka teve sua integracao
testada primeiramente através da producao de mensagens diretamente em seu servidor
(isolado dos gateways) e entdo através de mensagens submetidas aos tépicos MQTT
(integrado aos gateways.) Apods a subida das imagens, o consumo e a produgao de mensagens
diretamente no servidor se deram pelos comandos Cod.(5.4) e C6d.(5.5), respectivamente,

com o resultado evidenciado pela imagem Fig.(28).

Cédigo 5.4 — Comando de consumo de tépicos Kafka

docker—compose exec broker \
kafka—console—consumer \
— —bootstrap—server localhost:29091 \
— —topic test—topic

Cédigo 5.5 — Comando de producao em tépicos Kafka

docker—compose exec broker \
kafka—console—producer \
— —broker—list localhost:29091 \
— —topic test—topic

Figura 28 — Execugao de consumo e publica¢oes de mensagens no tépico "test-topic', Kafka.
A esquerda a publicagdo e a direita o consumo.
regional (ft/results*) » docker-compose exec broker \ regional (ft/results*) » docker-compose exec broker \

kafka-console-producer \ kafka-console-consumer \
--broker-1ist localhost:29091 \ --bootstrap-server localhost:29091 \

--topic test-topic --topic test-topic
>this is a test message this is a test message

Fonte: Autor

Com o consumo apontando ao mesmo endereco, foi realizado um teste integrado
ao gateway por meio do comando C6d.(5.2), aqui com o conteddo ja em json. O resultado

foi semelhante, e estd apresentado na figura Fig.(29). Ainda, utilizando de um processo

5.1. INTEGRACAO DE SERVICOS 53

ConsumeKafka, foi possivel consumir a mensagem através do NiFi, como demonstra a
figura Fig.(30).

Figura 29 — Teste de integracao do servidor MQTT ao broker Kafka.

gateway (ft/results+*) docker-compose exec mosquitto \ i [(ft/results*) docker-compose exec broker \
afka-console-consumer %\
mosquitto pub \ --bootstrap- - localhost:29091 \
-1 test-producer \ --topic test-topic
lh

-h

-t

-m

-u tcc_test
-P 12345

{"device guid": "this is a test message"}

Fonte: Autor

Figura 30 — Consumo de mensagens publicadas em broker Kafka usando NiFi.

(a) Processo de consumo Kafka.

ConsumeKafka

Consumekafka_1_01.13.2

org.apache.nifi - nifi-kafka-1-0-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 298 /00:00:03.300 5 min

Queued 1 (41 bytes)
NP

(b) Conteido da mensagem.

Name success

View as: original v

{"device guid": "this is a test message"}

Fonte: Autor

5.1.3 Nuvem

Para testar a ingestao nos servicos AWS S3 e AWS DynamoDB, foi utilizado o
modelo de contetido presente no cddigo Cdd.(4.1) atualizando o campo de timestamp
para o momento da requisi¢ao. A figura Fig.(31) demonstra a entrada da mensagem nos
processos de ingestao dos servigos. As figuras Fig.(32a), Fig.(32b) e Fig.(32c) demonstram
o arquivo chegando no S3, ao passo que na figura Fig.(33a) e Fig.(33b) é apresentado a

chegada dos documentos no DynamoDB.

5.2. CLUSTER KAFKA E REPLICACAO DE MENSAGENS 54

Figura 31 — Chegada de mensagens nos processos de ingestao do S3 e DynamoDB.

—r-'-'---.---.-‘-_--—--—_—-“'--—

Ta in Ta in
Cuened 1 (140 bytes) Oueued 1 (140 bytes)

l |

Batch - 53 Stream - DynamoDB

1] 00] 0 0 o 0 0 3 0]
Oueued 0 {0 bytes) Queued 0 {0 bytes)
In 0 {0 bytes) -1 In 0 (0 bytes) -1

Fiead/Write 0 bytes / 0 bytes FeadWrite 0 bytes /0 bytes
Cut 0 — 0 (D bytes) Ot 0 — 0 {0 bytes)

Fonte: Autor

5.2 Cluster Kafka e replicacao de mensagens

Assim como discutido na se¢ao de Metodologia (Sec.(4)), a etapa especifica teve
na camada regional a implementacao de um cluster kafka constituido de trés brokers,
onde todos apontam ao orquestrador Zookeeper pela porta 2181. Apds subida dos servigos
Docker, a verificacdo dos brokers ativos foi feito através do comando apresentado no
codigo Céd.(5.6), a qual retornou o log de execugao abaixo. E possivel notar que os
ids de brokers ativos sdo respectivos aos valores que foram definidos de id para cada
um dos brokers no arquivo docker-compose.yml. Os detalhes de cada um deles pode
ser acessado diretamente pelo orquestrador Zookeeper através do comando zookeeper-
shell localhost:2181 get /brokers/ids/${id} (${id} o id do broker), demonstrado
na figura Fig.(34).

Cédigo 5.6 — Comando de listagem de ids de brokers ativos no cluster Kafka.

$ docker—compose exec zookeeper \
zookeeper—shell \
localhost:2181 '\
Is /brokers/ids

Connecting to localhost:2181
WATCHER: :

WatchedEvent state:SyncConnected type:None path:null
(1, 2, 3]

Com a subida do cluster Kafka, foi possivel criar os topicos da etapa especi-
fica com o fator de replicagao e particionamento configurados, respectivamente, como 2

e 10. Com o comando kafka-topics -describe -zookeeper zookeeper:2181 -topic

5.2. CLUSTER KAFKA E REPLICACAO DE MENSAGENS 55

Figura 32 — Ingestao de mensagens no S3.
(a) Ingestao de dados no S3. Nota-se que o status da execugdo é de sucesso.
E>J B in

Queued 00 bytes)

|

[~ p ConvertRecord

i : ConveriRecond 1.13.2
= ongapsche nifi - ni-standars-nar
3 W (T _m 1 {140 byres) 5 min
L Cueued 00 bytes] Read/Write 140 bytes / 114 bytes 5 min
Out 10114 bytes) S min
Tasks/Time 1/ 00:00:00.410 S min
|
Name success
Queusd 00 bytes)
(= p MergeRecord
I MargeRecord 1.13.2
ongapachenifi - ni-standarc-nar
In 10114 bytes) Smin
FeadWrite 114 bytes/ 1.54 KB Smin
Ot 10(1.54 KB) 5 min
Tasks/Time 53/ 00:00:01.600 S min
|
Name merged
Quewed 00 bytes)
¥
=Y Extrair hora
1 > UpdeteAtiribute 1.13.2
ongapache nifi - nfupdaie-atiinsenar
In 10(1.54 KB) 5 min
FeadWrite 0bytes /0 bytes S min
Out 1(1.54 KB) 3 min
Tasks/Time 1/ 00:00:00.003 Smin
!
Name success
Quewed 00 bytes)
h i
[~ p PutS30hbject
| Put530bject 1.13.2
ongapachenifi - ni-aws-nar N
In 1(1.54KB) Smin L] VAme success L
ReadWrite 1.54 KB/ 0 bytes 5 min Cueued 1(1.54 KB] ¥
Out 1(1.54 KB) 5 min
Tasks/Time 1/ 00:00:00.930 S min
Name failure
CQueued 00 bytes)
E.

(b) Nome e caminho de arquivo no S3.

Amazon S3 » test-tcc-bucket > test/ » 2021-10-21/ > hour=01/ > 4903cd38-547f-4ble-ab7a-8d5660651¢ccE.parquet

4903cd38-547f-4b1e-ab7a-8d5660651cc6.parquet i

(¢) Nome de arquivo no NiFi.

success

Displaying 1 of 1 (1.54 KB)
Position uuID Filename

a 1 671bb1d4-7130-4ff7-8010-76cBdb7fca3f 4903cd38-547f-4b1e-ab7a-8d 5660651 ccé.parquet

Fonte: Autor

${nome_topico} (${nome_topico} sendo o nome do topico) foi possivel extrair as infor-

5.2. CLUSTER KAFKA E REPLICACAO DE MENSAGENS 56

Figura 33 — Ingestao de mensagens no DynamoDB.

(a) Execugao de ingestao de mensagem no DynamoDB com sucesso.

Queued 0 (0 bytes)

l

Reestruturar Payload

JoltTransformJS0N 1.13.2
arg .epache nifi - nifi-standard-nar
In 2 (280 bytes) 5 min
Read/Write 280 bytes / 316 bytes 5 min
Out 2 (316 bytes) 5 min
i

Tasks/Time 2 /00:00:00.273 5 min

|
Name success
Queued 0 (0 bytes)

PutDynameoDB (test)
PutDynamoDB 1.13.2
arg.epache.nifi - nifi-gws-nar
in 2 (316 bytes] pmin | | | Neme success Ll
Read/Write 0 bytes / 0 bytes 5 min Queued 1 (158 bytes)
Out 2 (316 bytes) 5 min
i

Tasks/Time 2 /00:00:00.482 5 min

I
Name failure

Queued 0 (0 bytes)

¥

(b) Documento na tabela test-table.

DynamoDB Iltemns: test-table Iltem editor

[tem editor

Attributes (P View DynamoDB JSON

“device_gquid™: "e81°,
“timestamp_ttl": 1634867332,
- "5
“context™: “temperature”,
“temperature”: 25,
“device_guid®: "881°,
“guid®: "1bB78216-2b66-45d7-97d3-fE59233ae85e",
“timestamp_tt1™: 1634667532,
“timestamp”: 1634781132

i
Fonte: Autor

magoes de particionamento, replicagao e qual é o broker lider da particao, assim como

mostra a figura Fig.(35) para o topico devices-temperature.

Como padrao da imagem Docker utilizada neste projeto (confluentinc/cp-kafka:6.2.0),

todas as mensagens registradas nos topicos ficam sobre o diretério /var/lib/kafka/data/.

5.2. CLUSTER KAFKA E REPLICACAO DE MENSAGENS

57

Figura 34 — Extracao de informagoes de brokers Kafka ativos no orquestrador Zookeeper.

cnnﬂctlng lccalhost 2181

VATCHER: :

latchedEvent state:SyncConnected type:None path:null

{”features”:{}.”Listﬁnﬁr_security protocol map":{"LISTENER DOCKER INTERNAL":"PLAINTEXT","LIST

ENEF. DOCKER_EXTERMAL":"PLAINTEXT"},"endpoints":["LISTENER DOCKER INTERNAL://broker
LISTENER DOCKER EXTERMAL://127.6.0.1:9091"],"jmx_port":-1,"port":29691, "host":"br
sion":5, ”tlm#stamp“:”16348(2108138”}

sh-4.4% zookeeper-shell localhost:2181 get /brokers/ids/2

Connecting to localhost:2181

vent state:SyncConnected type:None path:null
{"features":{}, "listener security protocol map":{"LISTENER DOCKER INTERN "PLAINTEXT",

T

ENER_DOCKER EXTERNAL": P[AINTEXT"T,"Endpoints":["LISTENER DOCKER_INTERNAL://broker-b:29092","

LISTENER_DOCKER_EXTERMAL://127.8.8.1:9092"],"jmx_port":-1,"port":29892, "host":"broker-b", "
sion":5, Ttim 5tamp“-”1634862138945“}

sh-4.4% zookeeper-shell localhost:2181 get /brokers/ids/3

Connecting to localhost:2181

latchedEvent state:SyncConnected type:None path:null

{"features":{}, "listener security protocol map":{"LISTENER DOCKER INTERNAL":"PLAINTEXT","LIST
ENER_DOCKER_EXTERNA| :"PLAINTE)‘TT"}."'ndpo:l.rl‘ts”'[ISTENER_DOCKER_INTERNAL://b -C 29093" "
LISTENER DOCKER EXTERMAL://127.0.0.1:9893"],"jmx port":-1,"port":29093, "host":"broker-c", "ver

sion”:5, "timestamp” : "1634862108946" }
Fonte: Autor

Figura 35 — Detalhamento de topico devices-temperature em cluster Kafka.

ceeper zookeeper:
ature : ovjflaTtSWeTMwN_ a artiti 9 ReplicationFactor: 2
Topic: emperature Partition: @ g 1 eplica Isr
Topic: i emperature Partition: i Isr:
Topic: i e g Partition: :
Topic: i e g Partition:
Topic: i & e Partition: 4
Topic: i e e Partition:
Topic: i e g Partition:
Topic: i e e Partition:
Topic: i e re Partition:
Topic: devices-temperature Partition:

LR W R R

Fonte: Autor

Configs:

Neste diretério, como cada topico criado teve um parametro de particionamento igual a 10,

foram criados 10 sub-diretorios de particionamento para cada tépico, o que acontece para

cada broker ativo no cluster. A figura Fig.(36) mostra, para o broker a, os sub-diretdrios

criados como resultado do particionamento dos topicos.

Figura 36 — Particionamento dos sub-diretérios, no broker a, para cada um dos tépicos

criados.

humidity-@ s-humidity-8
humidity-2 s-humidity-9

humidity-3 s-luminosity-0 oin
humidity-a s-luminosity-1 ication-c
humidity-6 s luninosity-4

Fonte: Autor

Para testar a replicagdo das mensagens, foi realizado um teste de publicacao

especificando uma chave (key) de particionamento. Esta chave, através de um algoritmo

round-robin, elege qual particionamento do toépico as mensagens deverao ser publicadas.

No exemplo da figura Fig.(37), a chave key0 foi eleita para ser publicada na partigao

5.2. CLUSTER KAFKA E REPLICACAO DE MENSAGENS 58

4 do topico devices-temperature. Pela figura Fig.(35), esta particdo estd replicada
nos brokers b e c (id 2 e 3, respectivamente), e portanto qualquer mensagen publicada
com esta chave serd salva nos arquivos /var/lib/kafka/data/devices-temperature-
4/00000000000000000000. 1og dos brokers mencionados. A figura Fig.(38) demonstra
justamente isso: a mensagem publicada na figura Fig.(37) foi replicada para os brokers b e

¢ na particao 4 do topico devices-temperature.

Figura 37 — Publicacdo de mensagens no topico devices-temperature com chave de
particionamento.

al E -compose exec broker- r al | esults*) docker-compose exec broker-a ka
a ka g list localhost:298 5 --bootstr localhost:29091
91 --topic devi eratur roperty parse /= i

p Y ty print.key=false -
true --property : ator=":" --property p .k -partition n-beginning
=false this is a test message published to a specific partition
this is a test message published to a specific ed hashed key
artitioned hashed key

Fonte: Autor

Figura 38 — Contetdo dos arquivos de logs nos brokers b (esquerda) e c (direita) para o
topico devices-temperature, particao 4.
r-b cat /var ri Ls [er = r-c cat fva

0080806. Log r/lib, ata/ e ature 00006008 . 1
og

B5gBE | GGG | GRERLHEEG keyOBthis is a test message publi BSgBY | GGGE | GRELEHLELBEGGBEGLGKeyObthis 1 test message publ
shed to a specific partitioned has 3 ished to a specific partitioned hashed k

Fonte: Autor

Com a replicacao de mensagens, o consumo delas pdde ser feito em cenarios onde um
dos brokers se torna inativo. Por exemplo, ao desligar o broker c, as mensagens publicadas
ao topico devices-temperature na particao 4 continuam passiveis de serem consumidas,
pois elas continuam sendo escritas no broker b. A figura Fig.(39) demonstra este cenario,
onde é possivel verificar que as mensagens publicadas ao topico continuam sendo gravadas
no broker b. Com isso as mensagens publicadas ao topico continuam disponiveis para
consumo mesmo em cendarios de quedas e panes de nédos, garantindo maior resiliéncia a

arquitetura.

E valido destacar que a escolha apropriada da quantidade de brokers, do parti-
cionamento de cada tépico, de nédos de orquestramento (instdncias Zookeeper) e do
fator de replicacao dependem diretamente do cenario de uso, publicacdo e consumo dos
topicos. Quanto maior a quantidade de clients realizando a publicagdo e o consumo dos
tépicos, preferencialmente maior deverd ser a quantidade de parti¢oes de cada topico.
Ainda, dependendo da criticidade e do valor de negécio de cada mensagem, a arquitetura
deverda comportar mais brokers no cluster a fim de se garantir maior resiliéncia. Como este
exemplo se trata de uma prova de conceito, o valor arbitrario de 10 partigoes por topico
e 3 brokers no cluster foi escolhido. Para adequar esta escolha a um caso aplicado, um

levantamento de métricas dos fatores mencionados deve ser feito.

5.3. CONSUMO DE DADOS DA NUVEM 59

Figura 39 — Publicacao e escrita de mensagens no cenario de queda do broker c.

(a) Publicacdo de mensagem.

regional (ftt/results*) » docker-compose exec broker-
a kafka-console-producer --broker-list localhost:296
91 --topic devices-temperature --property parse.key=
true --property key.separator=":" --property print.k
ey=false

=keyB:this is a test message published to a specific
partitioned hashed key
=keyB:this is a test message published to a specific
partitioned hashed key after breaking broker-c
(b) Mensagens publicadas no tépico devices-temperature, parti-
¢ao 4, apos desligar o broker c.

gional (ft/results*) » docker-compose exec broker-b cat /var
/kafka/data/devices-temperature-4,/00000000000000000000. Log

fic partitioned hashed key after breaking broker-cg
Fonte: Autor

5.3 Consumo de dados da nuvem

Na secao Metodologia Sec.(4), foram apresentados as especificagoes da arquitetura
do cenario especifico, bem como os dados gerados pela fonte que seriam consumidos e
replicados & nuvem. A partir da modelagem detalhada na tabela Tab.(2), foi usado o
software loT-data-simulator para a geragao dos dados e, conforme o detalhamento da
arquitetura, dos servicos AWS S3, DynamoDB e RDS para o armazenamento em nuvem

de tais dados para, respectivamente, batch, stream e dados estruturados.

Os dados em batch foram armazenados em um servico AWS S3, particionados
por data e hora de armazenamento de carga. Todos os arquivos foram convertidos em
formato .parquet para otimizagdo de volumetria de armazenamento. As figuras Fig.(40)
demonstram um exemplo de carga executado no dia 28 de Outubro de 2021, as 20:00
horas. Cada arquivo possui em média de 3.5 KB, o que é respectivo a aproximadamente
5 minutos de agregacao de registros conforme o tempo de disparo do simulador. Este
volume pode ser ajustado dependendo da necessidade para, por exemplo, agregar mais ou
menos dados, ou agrega-los em uma janela de tempo maior, de forma que a escolha mais

adaptada deve ser feito com base no cenério de aplicagao.

Os dados armazenados em forma de stream foram gravados em tabelas no Dyna-
moDB separadas por tipo de evento recebido. Todos foram armazenados com tempo limite
de expiragao de um dia, de forma que durante este tempo eles se mantiveram disponiveis
para consumo. As figuras Fig.(41) mostram o histérico de execuc¢ao de requisi¢oes de
escrita nas tabelas DynamoDB para a mesma carga executada no dia 28 de Outubro de
2021, as 20:00 horas.

5.3. CONSUMO DE DADOS DA NUVEM 60

Figura 40 — Armazenamento de batch de dados no S3, particionados por data e hora.
(a) Dados de amonia.

Amazon S3 lot-stream-tcc ammonia/ 2021-10-28/ hour=20/
hour=20/

Objects Properties

Objects (7)

Objects are the fundamental entities stored in Amazon 53. You can use Amazon $3 inventory E to get a list of all objects in your bucket. |

Action

Q
Name A Type v
[005a066c-506f-4271-9203-f16f10b04c97.parquet parquet
[6762a2d6-4e3c-416¢c-8df1-4a88bc96974c. parquet parquet
M 6cebsc53-02db-42fd-b0d4-03af24d3d05a.parquet parquet
B 8116b16d-8677-49b1-9335-6f7a95cda360.parquet parguet
[d478d7a3-bSe2-4c16-986c-97c0955e60c2. parquet parquet
[db621651-82e8-4927-975f-67f59e584f81.parquet parguet
[eesfafdc-8d2e-40ed-8469-37ea15c98f2e.parquet parguet

(b) Dados de temperatura.
Amazon S3 iot-stream-tcc temperature/ 2021-10-28/ hour=20/

hour=20/

Objects Properties

Objects (7)

Objects are the fundamental entities stored in Amazon 53. You can use Amazon 53 inventory E to get a list of all objects in your bucket.

Actior

Q
Name A Type v
[1ae8bsd4-e0f8-4b79-b4a7-66b293233a85.parquet parquet
[} 1fa05b0d-8611-489¢-9de0-934095ac7fd4.parquet parquet
[44dc3es2-6fd2-4b32-b938-85cecabd5e0e.parquet parquet
[} sf7b7fdb-5b6f-42a1-a816-a2077bbcfa1f.parquet parquet
[} 63adebbf-68a5-47c1-ab7a-5¢3167db9890.parquet parquet
B 9a230e86-64ec-4c72-81c0-5c650e500418 parquet parquet
[c334a816-6297-4c7d-9fe9-e877afb80eb2.parquet parquet

Fonte: Autor

Através de um processo PutDatabaseRecord, no Nifi, os registros também foram

ingeridos em um banco de dados Postgres, através do uso do servico AWS RDS. Cada

5.3. CONSUMO DE DADOS DA NUVEM

61

Figura 41 — Histérico de requisi¢oes de escrita feito em cima das tabelas DynamoDB.

(a) iot-stream-ammonia.

Write usage (average units/second) Thinute ¥

015

0
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 202 2027 2028 2029 2030 203 2032 203

(b) iot-stream-humid

Write usage (average units/second) 1Minute ¥

0025

0015

2019 020 w21 2022 2028 2024 2025 2026 2027 202 2025 2030 2031 2032 2038 2034 2035 2036

2037

(multiple) ¥ | 1h 3h 12h 1d 3d 1w Custom (30m) [

2034 2035 2036 2097 2038 2039 2040 2041 2042 2043 204 2045

ity.

(multiple) ¥ | | 1h 3h 12h 1d 3d 1w Custom (30m)

03 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

[Z View in metrics

(c) iot-stream-temperature.

Write usage (average units/second)

221 202 2023 2026 2025 2026 2027 2028 2029 2030 2031 2032 203 2034 2035 2036 2037 2038 2039

040 2041 2042 2043 2044 2045 2046 2047 2048 204 2050

(d) iot-stream-luminosity.

Write usage (average units/second)

1Minute ¥ | (multiple) ¥ || 1h 3h 12h 1d 3d 1w Custom (30m) B

0025

0015

2020 2021 222 2023 2024 2025 202 2027 2028 2029 2030 2031 2032 2033 2034 2035 203 2037

2038 203 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

[2 View in metrics

Fonte: Autor

5.4. DISCUSSOES 62

tipo de evento foi inserido nas suas tabelas respectivas, criando assim uma base contendo

todos os eventos disparados pelos sensores simulados.

Os dados contidos no banco de dados Postgres foram, através de uma conexao
JDBC, extraidos para o Google Data Studio, no qual foi possivel criar uma tela de
Dashboard para cada tipo de métrica, contendo, para cada esta¢ao (A e B) uma evolucao
temporal das medidas (métricas de cada dispositivo segregados por cores distintas), uma
tabela com os tltimos registros da base e um ponteiro de média. As telas de dashboard
estdo apresentadas nas figuras Fig.(42), Fig.(45), Fig.(43) e Fig.(44) para os eventos de

amonia, umidade, temperatura e luminosidade, respectivamente.

5.4 Discussoes

E valido mencionar que o uso dos servicos discutidos nesta secdo, bem como os
resultados evidenciados, tomam como base um cenario hipotético e de relativamente baixa
volumetria, variedade e velocidade de dados. Desta forma, a volumetria de dados disponiveis
para consumo sao relativamente baixos, e, ainda, ndo exprimem nenhum resultado com

base em métricas reais, dado que os dados sao gerados via um simulador.

Porém, assim como foi apontado na segao de Introdugao Sec.(1), principalmente
nos objetivos do projeto, a arquitetura proposta e testada de acordo com a metodologia
discutida tinha como principal finalidade a de servir como uma prova de conceito, isto
é, validar a possibilidade de integrar servicos que sao ja conhecidos amplamente por
segurancga, escalabilidade e resiliéncia, para interoperar conforme foram integrados a fim
de se provisionar uma solugao que fosse capaz de: i) oferecer um nivel de processamento ja
na recep¢ao dos dados dos sensores (gateways); ii) recepcionar todos os dados gerados por
sensores em uma estacao unica, implementando uma esteira de dados conforme chegada
de eventos (regional); iii) ser capaz de enviar todos os eventos, ja validados pela esteira,
a nuvem, tanto em tempo real quanto em forma agregada; iv) desenhar a integragao
de todos os servigos em imagens virtualizadas (Docker) para facilitar a manutengao e a
reprodutibilidade; v) garantir que os registros enviados a nuvem pudessem ser, em casos

especificos, usados para qualquer aplicagdao analitica ou de negocio.

De fato, todos os servigos foram implementados em arquivos docker-compose.yml
respectivo a sua camada especifica (regional ou gateway), e entao integrados através de
conexoes internas ou externas. Como resultado, todos os eventos foram devidamente
validados, tratados e entao enviados para servicos de armazenamento situados na nuvem
da AWS, de forma que pudessem ser resgatados tanto para finalidades analiticas (banco de
dados Postgres e tabelas DynamoDB) quanto para reprocessamento ou de forma agregada
(S3). As especificades de volumetria, frequéncia de requisi¢oes, esteiras de tratamento,

analise dos dados, quantidade de gateways e de brokers no cluster Kafka devem ser

5.4. DISCUSSOES 63
Figura 42 — Dashboard para os eventos de amonia.

AMONIA

Working station: A

ammonia-sensor-14 ® ammonia-sensor-4A ® ammonia-sensoer-34 ®ammonia-sensor-24

Amdinia {p.p.m)

28 de out. 20:24:46 28 deout 202350 28 de out 20:34:54 28 de out. 20-39:58 28 deout. 20:45:02 28 de out. 205006 28 de out. 20:55:10

4.5
28 de'out 20:19:42
28 degut. 20:57:42

28 de out. 202214 28 de gut. 20:27:18 28 de gut 203222 28 de out. 203726 28 deaut. 20:42:30 28 de gul 204734 28 de gut. 20:52:38

Timastamp
Timestamp = Sensor Aminia (p.p.m.) I
1 28 de oul de 2021 210011 ammania-senso-d4 6,58
) 28 de oul de 2021 210003 ammania-sensor-3A 565
1 28 de oul_ de 2021 20:59:56 ammania-eenear-2A 633
4 28 de oul de 2021 20:59:48 ammania-sensar-1 A 633
5. 28 de oul. de 2021 20:59:41 ammania-gensar-aA 639 .
Meédia
Tatal a5
gersl 5 6,0
1-5/268 ¢ 3 2 10
Working station: B
ammaonia-sensor-28 * ammaonia-sensor16 ammonia-sensor38 ® ammonia-sensor-4B
75
¥ . . * - . . - . (]
o . L] . . - -
VPOV SOV (OURUOUR... I oRoui. UUUNN. NN, JUNUUL EUUURURUOUS VU SUUY . U SUURTTRTRLY. JEUURN PO L .
65 | @ - P - o g
z [o . . . s * ., - . -
. ‘s . ® . - .
sy =L bl a__% __®
5 6 r L 2 o
2 . T, o g0 L] & * . % *
. L] e * L] L .
2 L] o e L] ?
= v - e’® J . L] . by LI
FE N " - L. .. k
e . _» . -
o K, . L e .
L] L]
5 |o* . e . . » -
24 de out. 20:55:08

4.5
28 de'out. 20:19:40 28 degut 202444 23 de gut 20:29:43 28 de ot 20:34:52 28 de gut. 20:39:56 28 degut. 20:45:00 28 degut. 20.50:04

28 de gut. 202212 28 de gut 20716 28 de oul. 20:32:20 28 de aut. 203724 28 deout. 20:42:28 28 degut. 20:4732 28 de out. 20.52:36 28 de gut. 20:57:40

Timeglamp
Timestamp = Sensor Aménia (pp.m.)

1. 28 de out de 2021 2120011 ammonia-sensor-58 56
2 28 de gut de 2021 210005 ammonia-sensor-48 559
i 28 de out de 2021 20:59:59 ammonia-sensor-18 57
4. 28 de gut. de 2021 20:59:53 amimania-sensar-28 5M
5. 28 de gut. de 2021 20:59:47 ammania-sensar-18 6,15

Média

—— oo 6,0

1-5/338 ¢ 3 2 10

Fonte: Autor

dimensionados de acordo com a aplicacao.

E interessante que, com as métricas sendo acessiveis, é possivel realizar acoes e
tomadas de acao com bases nos eventos registrados nas bases de dados. De fato, é possivel
fazer uso de atuadores para acionar sistemas de controle de temperatura e umidade relativa,
bem como notificar quando a concentracdo de amodnia esta acima do limite estipulado.

Esta implementacao nao é limitada a recursos robustos de processamento, como o regional,

5.4. DISCUSSOES

64

Figura 43 — Dashboard para os eventos de temperatura.

Working station: A

® temperature-sensor-24

® lamperature-sensor1A

TEMPERATURA

® temperature-sensor-3A

L wa LR v eee o eee e
195
19 - L 2 - L *e .0 - e LN) - 0 L - -
2
3
g sus
H
aa (e L] [] e & e e {3 - L] o e @ L] { N
75
i RS PR PR /R ESSE OO ISUR VR PP At I A PUVON AU
28 de out. 2022020 28 de gut 2002518 28 deout 20023016 28 de gui. 20:35:14 28 deout 2004012 28 de out. 20:45:10 28 de out. 20-50-08 28 de out 20:55.06 28de ou_.

28 de out. 202249

28 degut. 202747

28 de gul 203245

28 de gut. 20:37:43 28 de et 20:42:41 28 degut 20471

28 degut. 20:5237 28 de out. 20:57:35

Timestamp
Timestamp = Sensor Temperatura (C) \
1 28 de oul de 2021 210010 lemperalure-sensor-24 a3
) 28 de oul. de 2021 20-59-50 lemperalure-sensor-14 a3
3 28 de oul. de 2021 20:59:30 tam peraturesen o3 &L |
4 28 de oul de 2021 20:59:10 tam perature sen o2 7
5. 28 de oul. de 2021 20:53.50 Tem peratureSsen sar-14 3 .
Meédia
Total gersl 38,36 38,4
1-5/98 ¢ » 35 a4
Working station: B
® temp-sensos-5B * tempsensor-3B ® temprsensor-2B temprsensor-48
P USSR B B e BB e DGO G P R S .
335
1| e » e 0% W OO . - L] soe @ . " o0 o re W
H
5
£
38 - - e LXK] . LR B B - » L B T sen »
75
TT G e mem oo Fer NI P S USRI S S S SUUSEUSUNN SUUUURUI SR P A SO S S A &
28 de out. 202021 28 de aut 202521 28 deoul. 20:30:21 28 de out 203521 28 deoul 204021 28 de oul 20.4521 Z8deoul 205021 20decul 20.5521 2 dea.
28 deoul. 202251 28 de ol 2027:51 Z8deoul. 203251 28 deout. 203751 28 deoul 20425 28 de aut. 20:47.51 28 de aut 205251 248 de out. 20:57.51
Timastamp
Timestamp = Sensor Temperatura (C)
1. 28 de oul de 2021 210025 tem prsensos 56 3
z 28 de oul. de 2021 210013 team p-sensos 26 3
3 28 de oul. de 2021 210001 temp-sensos36 7
4 28 de oul. de 2021 20:59.49 tem p-gensar 48 3
5. 28 de oul. de 2021 20:59.37 tem p-gensar 1B 7 i
Média
Total gersl 38,52 38,5

1-5/184 < 3 35

Fonte: Autor

44

mas também ¢é possivel de ser implementado em um ndédo de gateway, trazendo, assim, a

habilidade de se realizar fog computing.

Como possiveis desenvolvimentos e estudos futuros, é interessante trazer a arquite-

tura proposta para um caso real, visando evidenciar limita¢oes que possam surgir referente

a implementacao da arquitetura ou se é necessario alterar algum dos componentes. Como

5.4. DISCUSSOES

65

Figura 44 — Dashboard para os eventos de luminosidade.

Working station: A

lum=sensor-1A

® lumrsensor-24

LUMINOSIDADE

BT Mmoo A 4 R 1 A4 R R4
] L] & & L
E Média
: , [Em . .
e
i
§ & L]
6 .
5] . .
28 deout 202016 28 deout 20:24:58 28 deout 20:29:40 28 deout 2011422 28 deout 20:39.04 24 de out 2004396 20 de out 2004828 28 de out. 2005310
28 deoui 20:22:37 28 deoui 202719 28 deoui 20321 28 deoui 20:36:43 28 deoul 20:41:25 28 de outl 204607 28 de oul. 20-50:49 28 de oul 20:55:31
Timestamg
Timestamp - Sensor Luminosidade (lum)
1 28 deout de2021 20.57-45 urm-sen soe-1 4 26
2 28 deoul. 422021 20:5514 -2 Sar-2A 23
1 28 deoul de 2021 20:5244 bum-sensar-14 3a
4. 28 deoul de 2021 20:50-14 bum-sen sor-2A 25
5. 28 deout de2021 2004744 urm-sen soe-1 4 a0
Média
Total gersl 28
e 28,0
1-5/15 ¢ » 15 40
Working station: B
® lum=ensor-1B ® lumrsensor2B
30 9 - - - - -
e} -
Ly e — 4
e
Ef
=2
]
E z . L] -
2 .- . . P
»
28 de out 20024:58 28 de gut 20:38:58 20decut 204338 24 deout 20:48:18 28 de out 2005258 28 de ou.

25
28 degul 20:20:18
28 deout 20:22:38

Timestamp -

1. 28 deoul de2021 205744

ra 28 deoul de 2021 20:56:04
1 28 deoul de 2021 20:54:24
4. 28 degul de2021 20:5244
5 28 degul de2021 20:51:03

28 de out 20:2718

28 deoul 202938

Sensor

um-zensae-18
lum-sensor-3B
lum-sensor-2B
burm-sen sa0-18

lum-sensor-1E

Total geral

28 degut 20:34:18
28 de out 20:31:58

27

25

26

7

24

28 de out. 20:36:38 28 desut 20:41:18 28 de out 20:45:58 28 de out 20:50:33 28 de oui. 20:55:18

Timestamy
Luminosidade (lum)

Média
609 27,7

1-5/22 4 3 15 40

Fonte: Autor

este projeto visou desenvolver um sistema agnéstico de caso de uso, é possivel que surjam

pontos especificos e que possam ser agregados ao projeto, dado que o mesmo se encontra de

forma aberta no GitHub, para mitigar dificuldades e até mesmo ampliar as possibilidades

de uso.

5.4. DISCUSSOES 66

Figura 45 — Dashboard para os eventos de umidade.

UMIDADE

Working station: A
* humidity-sensor-1A * humidity-sensor-2A ® humidity-sensor-3A
& -
&4 . . . L] N N

Humidade relativa (%)
1
:E
I

60 * .
28 de out. 202001 28 deout. 202445 28deout 202929 28 deout 203413 28 deout. 20:38:57 28 de out 2043:41 28 de out. 20:48:25 28 de out. 20:53:09
28 deout. 202223 28 deout. 202707 28 deout 2031:51 28 deout 203635 28 deout 204119 28 de out 20:46:03 28 de out. 20:50:47 28 deout 20:5531

Timestamp
Timestamp ~ Sensor Humidade relativa (%) I

1 248 de oul. de 202) 20:57:46 humidity-sensor 1A 64 ———

2 28 de out. de 2021 20:56.06 numidity-sensoe3A 61

i 28 de out. de 2021 20.5426 humidity-sensos2A 62 I

4 28 de o de 2021 20.52.46 humidity-sensos 1A 61

5. 28 de ou. de 2021 205105 humidity-sensorIA 61— Média

Total geral 6236 62,4
1-8/2 < > 59 66

Working station: B
® humidity-sensor-38 ® humidity-sensor-48 ® humidity-sensor-18 ® humidity-sensor-28

65 @ O B PR PR P P
64 . . L
£
2 a .
ER Védia B
3
g @ . o . . .
61 | R S S A S S B P S T ST SRR ST S
60 (] - L > t
28deout 202002 28 deoul 02444 28decul 202926 28deout 203408 28de oul 203850 28deoul 204332 28deout 2048114 28 deoul 20:52.56 28 deou..
28deout 202223 28decul 202705 28deowt 2031147 28deout 203629 28deoul 2041711 28de out 2004553 28 deout 205035 28 deout 20:5517
Timestamp
Timestamp ~ Sensor Humidade relativa (%)
1. 28 de out. de 2021 20.57.45 humidity-sensor 38 65 I
2 28 de out. de 2021 20:56:30 humidity-sensos48 62—
3l 28 de out. de 2021 20:55.15 humidity-sensos 28 ar
4 28 de o de 2021 20.54.00 humidity-sensos18 60 I
5 28 de o de 2021 20.52.45 humidity-sensor38 60 — s
Média
Total
gersl 62,48 62'5
1-5/29 ¢ > 59 66

Fonte: Autor

67

6 CONCLUSAO

Neste estudo foi realizada a integracao de uma arquitetura hibrida proposta para
casos de sistemas IoT, onde, para cada camada desta proposta, foram integrados softwares
open-source amplamente conhecidos para provisionar um cenario no qual muitos sensores
em diversas estagoes de monitoramento geram dados de métricas que sejam validados,
tratados e entdo enviados para a nuvem. Entende-se, neste estudo, que cada sitio onde se
encontram os sensores configura uma "estagao', na qual, para cada uma delas, se encontra
um dispositivo de sistema embarcado, denominado de gateway, que hospeda um servidor
de protocolo MQTT (Mosquitto) e um software para validagao de eventos em tempo real
(Python). Todos os gateways se comunicam a uma estagao local e centralizada, chamada
aqui de camada regional, onde os eventos sao enviados a um cluster Kafka e entao tratados
por uma esteira de dados Nifi. Apds tratamento, os dados sdo disponibilizados na nuvem

através de bases especificas que servem finalidades diferentes.

Como estudo de caso, a arquitetura proposta foi usada para simular um cenario
de uso de IoT para monitoramento de uma estagao de avicultura. Para este caso, o
desenvolvimento da integracao foi orientado a duas estacoes, denominadas A e B, cada
qual com uma quantidade especifica de sensores, integrados a um cluster Kafka de trés
brokers, sendo os eventos tratados e enviados a nuvem por uma esteira de dados Nifi. Os
dados foram gerados de forma sintética através do software loT-data-simulator, onde,
como resultado, foi possivel obter um dashboard que resumia os valores de cada métrica
emulada, bem como resgatar os dados agregados do servico AWS S3, da base de dados
NoSQL DynamoDB e do Postgres SQL.

Com os resultados obtidos, foi possivel evidenciar que a presente proposta consegue
provisionar cendrios de queda de alguns dos servigos (por exemplo, broker Kafka) e o
tratamento e validacao dos eventos gerados em tempo real. Ainda, a conex@o com a camada
regional se provou possivel apds a implementacao de duas estacoes de monitoramento,
podendo ser extendido para demais nédos (estacoes) dependendo do caso de uso. E
importante ressaltar que quaisquer especificades podem exigir novos dimensionamentos de
recursos, como quantidade de nédos de gateways, brokers Kafka, agregacao de dados na

esteira Nifi, e estruturagao e tratamentos especificos dos dados.

Como possiveis estudos futuros, sugerimos colocar os métodos e resultados propostos
a prova em um cenario real. A arquitetura foi desenhada de forma agndstica, necessitando
ser testada e validada para cada caso de uso. Estudos nesta linha podem evidénciar
eventuais melhorias de arquitetura ou de desempenho, o que pode contribuir para a

evolugao e melhorias futuras.

68

Referencias

AKIDAU, T.; CHERNYAK, S.; LAX, R. Streaming Systems: The What, Where, When,
and How of Large-Scale Data Processing. Paperback. O’Reilly Media, 2018. 352 p. ISBN
978-1491983874. Disponivel em: <https://lead.to/amazon/com/?op=bt&la=en&cu=usd&
key=1491983876>.

ALMEIDA, G. et al. Internet of Things (Iot): Um Cenario Guiado Por Patentes
Industriais. GESTAO.Org : Revista Eletronica de Gestdo Organizacional, v. 13, n.
Especial, p. 271-281, 2015. ISSN 1679-1827.

AUMONT, O. et al. Introduction to IoT. [s.n.], 2018. v. 43. 679-694 p. ISSN 17264189.
ISBN 2709910403. Disponivel em: <http://www.unil.ch/ssp/page34569.html>.

BAHRI, M. et al. Data stream analysis: Foundations, major tasks and tools. WIREs
Data Mining and Knowledge Discovery, v. 11, n. 3, p. 1-17, may 2021. ISSN 1942-4787.
Disponivel em: <https://onlinelibrary.wiley.com/doi/10.1002/widm.1405>.

BELLAVISTA, P.; ZANNI, A. Feasibility of fog computing deployment based on docker
containerization over RaspberryPi. ACM International Conference Proceeding Series,
2017.

BURNS, B. Designing Distributed Systems: Patterns and Paradigms for Scalable, Reliable
Services. 1st. ed. [S.1.]: O’Reilly Media, Inc., 2018. ISBN 1491983647.

CATTELL, R. Scalable SQL and NoSQL data stores. ACM SIGMOD Record,
v. 39, n. 4, p. 12-27, may 2011. ISSN 0163-5808. Disponivel em: <https:
//dl.acm.org/doi/10.1145/1978915.1978919>.

CHARLES, D. R.; GROOM, C. M.; BRAY, T. S. The effects of temperature on
broilers: Interactions between temperature and feeding regime. British Poultry
Science, v. 22, n. 6, p. 475-481, jan 1981. ISSN 0007-1668. Disponivel em:
<http://www.tandfonline.com/doi/full/10.1080/00071688108447913>.

CHATTI, S. Using Spark , Kafka and NIFI for Future Generation of ETL in I'T Industry.
Journal of Innovation in Information Technology, v. 3, n. 2, p. 11-14, 2019.

CIRANI, S. et al. The IoT hub: a fog node for seamless management of
heterogeneous connected smart objects. In: 2015 12th Annual IEEE International
Conference on Sensing, Communication, and Networking - Workshops (SECON
Workshops). IEEE, 2015. p. 1-6. ISBN 978-1-4673-7392-0. Disponivel em: <http:
/ /ieeexplore.ieee.org/document /7328145 />.

DEBAUCHE, O. et al. Edge Computing and Artificial Intelligence for Real-time Poultry
Monitoring. Procedia Computer Science, v. 175, n. 2019, p. 534-541, 2020. ISSN 18770509.
Disponivel em: <https://linkinghub.elsevier.com /retrieve/pii/S1877050920317762>.

DUSIA, A.; YANG, Y.; TAUFER, M. Network Quality of Service in Docker Containers.
In: 2015 IEEE International Conference on Cluster Computing. IEEE, 2015. v.
2015-Octob, p. 527-528. ISBN 978-1-4673-6598-7. ISSN 15525244. Disponivel em:
<http://ieeexplore.iece.org/document /7307643 />.

https://lead.to/amazon/com/?op=bt&la=en&cu=usd&key=1491983876
https://lead.to/amazon/com/?op=bt&la=en&cu=usd&key=1491983876
http://www.unil.ch/ssp/page34569.html
https://onlinelibrary.wiley.com/doi/10.1002/widm.1405
https://dl.acm.org/doi/10.1145/1978915.1978919
https://dl.acm.org/doi/10.1145/1978915.1978919
http://www.tandfonline.com/doi/full/10.1080/00071688108447913
http://ieeexplore.ieee.org/document/7328145/
http://ieeexplore.ieee.org/document/7328145/
https://linkinghub.elsevier.com/retrieve/pii/S1877050920317762
http://ieeexplore.ieee.org/document/7307643/

Referéncias 69

GARG, N. Apache Kafka. [S.1.]: Packt Publishing, 2013. ISBN 1782167935.

GODFREY, P. B. Designing distributed systems for heterogeneity. [s.n.], 2009. 178 p.
ISBN 9781491983645. Disponivel em: <http://www.eecs.berkeley.edu/Pubs/TechRpts/
2009/EECS-2009-82.pdf>.

GORELIK, A. The Enterprise Big Data Lake: Delivering the Promise of Big Data
and Data Science. O’Reilly Media, 2019. ISBN 9781491931523. Disponivel em:
<https://books.google.com.br /books?id=9yKJDwAAQBAJ>.

GUARDO, E. et al. A fog computing-based IoT framework for precision agriculture.
Journal of Internet Technology, v. 19, n. 5, p. 1401-1411, 2018. ISSN 20794029.

GUEVARA, A. J. d. H.; SILVA, J. L. A. da. INTERNET OF THINGS (IOT)
OPPORTUNITIES AND IMPACTS OF WELL-BEING ON CITIZENS AND SOCIETY.
Journal on Innovation and Sustainability RISUS, v. 10, n. 3, p. 3—16, dec 2019. ISSN
2179-3565. Disponivel em: <https://revistas.pucsp.br/risus/article/view/46504>.

HAJIHEYDARI, N.; TALAFIDARYANI, M.; KHABIRI, S. IoT Big Data Value Map. In:
Proceedings of the 2019 the 5th International Conference on e-Society, e-Learning and e-
Technologies - ICSLT 2019. New York, New York, USA: ACM Press, 2019. p. 98-103. ISBN
9781450362351. Disponivel em: <http://dl.acm.org/citation.cfm?doid=3312714.3312728>.

HUMANE FARM ANIMAL CARE. HFAC Standards for Chickens. Middleburg, VA,
2014.

IBA-GROUP-IT. IoT-data-simulator. [S.l.]: GitHub, 2020. <https://github.com/
IBA-Group-IT/IoT-data-simulator>.

ISAH, H.; ZULKERNINE, F. A Scalable and Robust Framework for Data
Stream Ingestion. In: 2018 IEEE International Conference on Big Data (Big
Data). IEEE, 2018. p. 2900-2905. ISBN 978-1-5386-5035-6. Disponivel em:
<https://ieeexplore.iece.org/document /8622360/>.

JADEJA, Y.; MODI, K. Cloud computing - concepts, architecture and challenges. In:
2012 International Conference on Computing, Electronics and Electrical Technologies
(ICCEET). IEEE, 2012. p. 877-880. ISBN 978-1-4673-0212-8. Disponivel em:
<http://ieeexplore.iece.org/document /6203873 />.

JANGLA, K. Accelerating Development Velocity Using Docker. Berkeley, CA: Apress,
2018. ISBN 978-1-4842-3935-3. Disponivel em: <http://link.springer.com/10.1007/
978-1-4842-3936-0>.

Jing Han et al. Survey on NoSQL database. In: 2011 6th International Conference on
Pervasive Computing and Applications. IEEE, 2011. p. 363-366. ISBN 978-1-4577-0208-2.
Disponivel em: <http://ieeexplore.ieee.org/document /6106531 />.

KALLA, A.; PROMBAGE, P.; LIYANAGE, M. Introduction to IoT. In: loT Security.
Wiley, 2020. p. 1-25. Disponivel em: <https://onlinelibrary.wiley.com/doi/10.1002/
9781119527978.ch1>.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-82.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-82.pdf
https://books.google.com.br/books?id=9yKJDwAAQBAJ
https://revistas.pucsp.br/risus/article/view/46504
http://dl.acm.org/citation.cfm?doid=3312714.3312728
https://github.com/IBA-Group-IT/IoT-data-simulator
https://github.com/IBA-Group-IT/IoT-data-simulator
https://ieeexplore.ieee.org/document/8622360/
http://ieeexplore.ieee.org/document/6203873/
http://link.springer.com/10.1007/978-1-4842-3936-0
http://link.springer.com/10.1007/978-1-4842-3936-0
http://ieeexplore.ieee.org/document/6106531/
https://onlinelibrary.wiley.com/doi/10.1002/9781119527978.ch1
https://onlinelibrary.wiley.com/doi/10.1002/9781119527978.ch1

Referéncias 70

KROPP, A.; TORRE, R. Docker: containerize your application. In: Computing
in Communication Networks. Elsevier, 2020. p. 231-244. ISBN 9780128204887.
Disponivel em: <https://doi.org/10.1016/B978-0-12-820488-7.00026-8https:
//linkinghub.elsevier.com /retrieve /pii/B9780128204887000268>.

LASHARI, M. H. et al. IoT Based Poultry Environment Monitoring System.
In: 2018 IEEFE International Conference on Internet of Things and Intelligence
System (IOTAIS). IEEE, 2018. p. 1-5. ISBN 978-1-5386-7358-4. Disponivel em:
<https://ieeexplore.ieee.org/document /8600837 />.

LEE, I; LEE, K. The Internet of Things (IoT): Applications, investments, and challenges
for enterprises. Business Horizons, "Kelley School of Business, Indiana University", v. 58,
n. 4, p. 431-440, jul 2015. ISSN 00076813. Disponivel em: <http://dx.doi.org/10.1016/].
bushor.2015.03.008https://linkinghub.elsevier.com /retrieve /pii/S0007681315000373>.

LIGHT, R. A. Mosquitto: server and client implementation of the MQTT protocol.
The Journal of Open Source Software, v. 2, n. 13, p. 265, may 2017. ISSN 2475-9066.
Disponivel em: <http://joss.theoj.org/papers/10.21105/joss.00265>.

LIYANAGE, M. et al. IoT Security: Advances in Authentication. Wiley, 2020.
ISBN 9781119527923. Disponivel em: <https://books.google.com.br/books?id=Bk6\
_ DwAAQBAJ>.

MALASKA, T.; SEIDMAN, J. Foundations for Architecting Data Solutions: Managing
Successful Data Projects. O’Reilly Media, 2018. ISBN 9781492038696. Disponivel em:
<https://books.google.com.br /books?id=IAIrDwAAQBAJ>.

MALEK, Y. N. et al. On the use of [oT and Big Data Technologies for Real-time Monitoring
and Data Processing. Procedia Computer Science, Elsevier B.V., v. 113, p. 429-434, 2017.
ISSN 18770509. Disponivel em: <http://dx.doi.org/10.1016/j.procs.2017.08.281https:
//linkinghub.elsevier.com /retrieve /pii/S1877050917316903>.

MARJANI, M. et al. Big [oT Data Analytics: Architecture, Opportunities, and Open
Research Challenges. IEEE Access, v. 5, n. ¢, p. 5247-5261, 2017. ISSN 2169-3536.
Disponivel em: <http://ieeexplore.iece.org/document/7888916/>.

NARGESIAN, F. et al. Data lake management. Proceedings of the VLDB
Endowment, v. 12, n. 12, p. 1986-1989, aug 2019. ISSN 2150-8097. Disponivel em:
<https://dl.acm.org/doi/10.14778 /3352063.3352116>.

ODUN-AYO, I. et al. Cloud Computing Architecture: A Critical Analysis. Proceedings of
the 2018 18th International Conference on Computational Science and Its Applications,
ICCSA 2018, IEEE, p. 1-7, 2018.

PAHL, C.; XIONG, H.; WALSHE, R. A Comparison of On-Premise to Cloud
Migration Approaches. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
[s.n.], 2013. v. 8135 LNCS, p. 212-226. ISBN 9783642406508. Disponivel em:
<http://link.springer.com/10.1007/978-3-642-40651-5_ 18>.

PETROV, A. Database Internals: A Deep Dive into How Distributed Data
Systems Work. O’Reilly Media, 2019. ISBN 9781492040316. Disponivel em:
<https://books.google.com.br /books?id=-12vDwAAQBAJ>.

https://doi.org/10.1016/B978-0-12-820488-7.00026-8 https://linkinghub.elsevier.com/retrieve/pii/B9780128204887000268
https://doi.org/10.1016/B978-0-12-820488-7.00026-8 https://linkinghub.elsevier.com/retrieve/pii/B9780128204887000268
https://ieeexplore.ieee.org/document/8600837/
http://dx.doi.org/10.1016/j.bushor.2015.03.008 https://linkinghub.elsevier.com/retrieve/pii/S0007681315000373
http://dx.doi.org/10.1016/j.bushor.2015.03.008 https://linkinghub.elsevier.com/retrieve/pii/S0007681315000373
http://joss.theoj.org/papers/10.21105/joss.00265
https://books.google.com.br/books?id=Bk6_DwAAQBAJ
https://books.google.com.br/books?id=Bk6_DwAAQBAJ
https://books.google.com.br/books?id=IA1rDwAAQBAJ
http://dx.doi.org/10.1016/j.procs.2017.08.281 https://linkinghub.elsevier.com/retrieve/pii/S1877050917316903
http://dx.doi.org/10.1016/j.procs.2017.08.281 https://linkinghub.elsevier.com/retrieve/pii/S1877050917316903
http://ieeexplore.ieee.org/document/7888916/
https://dl.acm.org/doi/10.14778/3352063.3352116
http://link.springer.com/10.1007/978-3-642-40651-5_18
https://books.google.com.br/books?id=-l2vDwAAQBAJ

Referéncias 71

RAJ, A. A. G.; JAYANTHI, J. G. [oT-based real-time poultry monitoring and health
status identification. In: 2018 11th International Symposium on Mechatronics and its
Applications (ISMA). IEEE, 2018. p. 1-7. ISBN 978-1-5386-1078-7. Disponivel em:
<http://ieeexplore.iece.org/document /8330139 />.

Shanzhi Chen et al. A Vision of IoT: Applications, Challenges, and Opportunities With
China Perspective. IEEE Internet of Things Journal, v. 1, n. 4, p. 349-359, aug 2014.
ISSN 2327-4662. Disponivel em: <http://ieeexplore.ieee.org/document /6851114 />.

SILVA, 1. L. d. O. da; JESUS, D. S. de. O IMPACTO DO AVANCO DA
INTERNET DAS COISAS NO BRASIL / EL IMPACTO DEL AVANCE DEL
INTERNET DE LAS COSAS EN BRASIL. Brazilian Journal of Development,
v. 6, n. 12, p. 101749-101758, 2020. ISSN 25258761. Disponivel em: <https:
//www.brazilianjournals.com/index.php/BRJD/article/view /22108 /17653>.

SINGH, M. et al. Artificial Intelligence and IoT based Monitoring of Poultry Health:
A Review. In: 2020 IEEE International Conference on Communication, Networks and
Satellite (Comnetsat). IEEE, 2020. p. 50-54. ISBN 978-0-7381-2517-6. Disponivel em:
<https://ieeexplore.ieee.org/document /9328930/>.

TALAVERA, J. M. et al. Review of [oT applications in agro-industrial and environmental
fields. Computers and FElectronics in Agriculture, v. 142, n. 118, p. 283297, nov
2017. ISSN 01681699. Disponivel em: <https://linkinghub.elsevier.com/retrieve/pii/
S0168169917304155>.

TOKAREVA, M. S.; VISHNEVSKIY, K. O. The impact of the Internet of Things

technologies on economy. Business Informatics, v. 3, n. 3, p. 62-78, 2018.

VASSILIADIS, P.; SIMITSIS, A.; SKIADOPOULOS, S. Conceptual modeling for ETL
processes. In: Proceedings of the 5th ACM international workshop on Data Warehousing
and OLAP - DOLAP ’02. New York, New York, USA: ACM Press, 2002. p. 14-21. ISBN
1581135904. Disponivel em: <http://portal.acm.org/citation.cfm?doid=583890.583893>.

WATHES, C. M.; KRISTENSEN, H. H. Ammonia and poultry welfare : a review. World’s
Poultry Science Journal, v. 56, n. September, p. 236-245, 2000.

WU, H.; SHANG, Z.; WOLTER, K. Learning to Reliably Deliver Streaming Data with
Apache Kafka. In: 2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2020. p. 564-571. ISBN 978-1-7281-5809-9.
Disponivel em: <https://ieeexplore.ieee.org/document,/9153457/>.

XIONG, Y. et al. Effects of relative humidity on animal health and welfare. Journal
of Integrative Agriculture, CAAS. Publishing services by Elsevier B.V, v. 16, n. 8§, p.
1653-1658, aug 2017. ISSN 20953119. Disponivel em: <http://dx.doi.org/10.1016/
52095-3119(16)61532-0https://linkinghub.elsevier.com /retrieve/pii/S2095311916615320>.

YAMAMOTO, I. H. C. tec_proj. [S.1.]: GitHub, 2021. <https://github.com/
igor-yamamoto/tcc_ proj>.

http://ieeexplore.ieee.org/document/8330139/
http://ieeexplore.ieee.org/document/6851114/
https://www.brazilianjournals.com/index.php/BRJD/article/view/22108/17653
https://www.brazilianjournals.com/index.php/BRJD/article/view/22108/17653
https://ieeexplore.ieee.org/document/9328930/
https://linkinghub.elsevier.com/retrieve/pii/S0168169917304155
https://linkinghub.elsevier.com/retrieve/pii/S0168169917304155
http://portal.acm.org/citation.cfm?doid=583890.583893
https://ieeexplore.ieee.org/document/9153457/
http://dx.doi.org/10.1016/S2095-3119(16)61532-0 https://linkinghub.elsevier.com/retrieve/pii/S2095311916615320
http://dx.doi.org/10.1016/S2095-3119(16)61532-0 https://linkinghub.elsevier.com/retrieve/pii/S2095311916615320
https://github.com/igor-yamamoto/tcc_proj
https://github.com/igor-yamamoto/tcc_proj

	Folha de rosto
	Dedicatória
	Agradecimentos
	Epígrafe
	RESUMO
	ABSTRACT
	Lista de abreviaturas e siglas
	Lista de ilustrações
	Lista de tabelas
	Sumário
	INTRODUÇÃO
	OBJETIVOS
	FUNDAMENTAÇÃO TEÓRICA
	Big-Data e computação em nuvem
	Edge e Fog computing

	IoT: a integração dos objetos à internet
	Softwares e ferramentas
	Streaming de dados e mensageria
	Esteira de processamento de dados
	Armazenamento de dados
	Containers, aplicações virtualizadas e Docker

	Avicultura de precisão

	METODOLOGIA
	Etapa geral: Modelagem de integração de serviços
	Gateway
	Regional
	Nuvem

	Etapa específica: Modelagem de experimento conduzido
	Dados sintético, modelagem e especificações
	Gateways e pré-tratamento de dados
	Cluster Kafka e esteira de dados Nifi
	Armazenamento de dados em Stream e Batch

	RESULTADOS
	Integração de serviços
	Gateway
	Regional
	Nuvem

	Cluster Kafka e replicação de mensagens
	Consumo de dados da nuvem
	Discussões

	CONCLUSÃO
	Referências

