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RESUMO
YAMAMOTO, IGOR H. C. Arquitetura de dados híbrida no contexto de IoT e
Big Data: um estudo para provisionamento de avicultura de precisão. 2021.
Número de folhas 71 f. Monografia (Trabalho de graduação de Engenharia Física) - Escola
de Engenharia de Lorena, Universidade de São Paulo, Lorena, 2021.

O presente trabalho tem como objetivo integrar softwares Open-Source e o provedor de
serviços de nuvem AWS (Amazon Web Services) para provisionar uma arquitetura híbrida
de dados orientada à IoT (Internet of Things). Neste estudo de caso, a arquitetura é
constituida de três camadas: gateway (coleta de dados de sensores e limpeza), regional
(comunicação com gateway e esteira de dados) e nuvem (armazenamento de dados estrutu-
rados e não estruturados). A comunicação com os sensores é feita via protocolo MQTT,
com servidores hospedados em cada nódo de gateway, e então publicados a tópicos de um
cluster Kafka por intermédio de um módulo Python. Na camada regional, as mensagens são
tratadas em uma esteira de dados NiFi e então enviadas aos serviços da AWS S3 (Batch,
data lake), DynamoDB (Stream, não relacional) e RDS (Stream, dados estruturados). As
aplicações Open-Source foram virtualizadas em containers Docker e o código de integração
foi publicado no GitHub. A integração dos serviços foi testada e usada em uma prova de
conceito através de um simulador de dados sintéticos orientado ao cenário de avicultura
de precisão, constituido de duas estações de monitoramento e supervisionando métricas de
temperatura, amônia, luminosidade e umidade relativa. Como resultado, foi obtido um
relatório com as métricas em tempo real dos sensores em cada gateway.

Palavras-chave: Internet das coisas, Big Data, avicultura



ABSTRACT
YAMAMOTO, IGOR H. C. Hybrid data architecture oriented to IoT and Big-
Data: a study on smart poultry provision.. 2021. 71 p. Monograph (Undergraduate
Thesis in Engineering Physics). Engineering School of Lorena, University of São Paulo,
Lorena, 2021.

The current work aims to integrate Open-Source software and AWS services (Amazon Web
Services) to provision a hybrid data architecture focused on IoT (Internet of Things). In
this study case, the architecture is composed of three layers: gateway (data collection and
cleaning), regional (communication with gateways and data pipeline), and cloud (structu-
red and non-structured data storage). The communication with the sensors is performed
via MQTT, with brokers hosted in each gateway, and then published to topics of a Kafka
cluster by a Python module. In the regional layer, messages are processed with NiFi and
then sent to AWS S3 (Batch, data lake), DynamoDB (Stream, non-relational) and RDS
(Stream, structured). Open-Source applications were virtualized using Docker containers
and the integration code was published on GitHub. The integration was tested and used
in a proof of concept based on smart poultry, modelled with two monitored stations and
gathering metrics of temperature, ammonia, luminosity and relative humidity. As a re-
sult, it was possible to obtain a report with real-time metrics of the sensors in each gateway.

Keywords: Internet of Things, Big Data, poultry
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1 INTRODUÇÃO

O cenário global de informações atualmente representa uma rede extremamente
complexa, interconectada pela Internet e com várias fontes que geram uma volumetria de
dados absurda. Com o advento da evolução tecnológica e da eletrônica, esta rede passou de
ser definida apenas por máquinas, operadas por seres humanos, para ser complementada
também por "coisas" que se encontram conectadas à Internet. Essas "coisas" são sensores,
atuadores ou qualquer dispositivo que possa receber e transmitir dados. Com isso, a
Internet deixa de ser uma rede global orientada apenas às pessoas, e passa então a ser
uma "Internet das coisas" (Internet of Things, IoT).

Se tratando de aplicações, este paradigma traz novas possibilidades disruptivas
de tecnologia e negócio. Um modelo de exemplo são as transformações "smart", isto é,
a habilidade de se trazer a capacidade computacional e a conexão com a Internet para
"dar vida" a utensílios domésticos, como lâmpadas (smart LEDs) e televisores (smart
TVs). Porém, vai muito além de simplesmente deixar as coisas "inteligentes": com IoT,
é possível realizar o monitoramento em escala de indústrias, de estações de produção
agrícola, alimentar algoritmos de previsão, integrar com outras fontes para geração de
valor, dentre muitas outras atividades. De fato, este paradigma já está presente em setores
como hospitalar, automotivo, industrial, agrícola, manufatura, logística e doméstico, e
promete, ao longo dos próximos anos, estar presente em todas as esferas do mercado de
tecnologia.

Com isso, vem à tona novos desafios, sendo um deles a de escalabilidade. Como
realizar uma implementação em escala de dispositivos de sensoriamento? Como fazer a
manutenção e a calibração dos sensores? Como garantir a integração de ponta a ponta
sem problemas que sejam críticos? Ainda que todas essas perguntas já tenham respostas,
modelos ou metodologias, um problema recorrente é em questão à infraestrutura de dados,
ou seja, quais recursos serão usados para provisionar toda a esteira de tratamento e
armazenamento de dados.

Esta imensa teia de informações e interações entre usuários e dispositivos introduz
uma complexidade extrema, e está associada, no universo de dados, com uma volumetria,
velocidade e variabilidade alta, e que pode trazer diferentes valores dependendo de como é
tratado. Esses quatro fatores usualmente definem um cenário que passou a ser comum entre
os produtos digitais que é hoje denominado como "Big Data", isto é, casos que possuem
como fator inerente a necessidade de lidar com uma diversidade de informações e mesmo
assim buscar gerar valor através de produtos ou serviços.

Do lado da tecnologia, temos atualmente uma ampla gama de ferramentas e
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produtos que provisionam soluções em diversos casos. Por exemplo, é possível hospedar
toda a infraestrutura tecnológica em um provedor de serviços em nuvem, como a Amazon
Web Services (AWS) ou a Microsoft Azure, as quais oferecem soluções proprietárias e
nativas ao ambiente, mas que também possibilitam fazer o uso de softwares de código
aberto (open-source). De fato, as possibilidades de arquitetura atualmente são diversas, e
em geral elas oferecem escalabilidade, resiliência, baixo custo e segurança da informação.

Neste estudo, realizamos uma revisão sobre a literatura no assunto de arquitetura
de dados para o contexto de IoT. Com base nisso, desenhamos uma proposta de arquitetura
híbrida e uma prova de conceito baseado em ferramentas open-source integradas com
serviços de armazenamento da provedora AWS, orientada ao assunto de avicultura de
precisão. Os testes foram feitos através de um simulador de dados sintéticos de IoT, e os
códigos da integração foram virtualizados em containers Docker e distribuidos em um
reposítório do GitHub. Como resultado, foi possível extrair as métricas dos sensores por
meio de um dashboard em tempo real.
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2 OBJETIVOS

Este estudo tem como objetivo revisar a literatura acerca de arquiteturas de Big
Data dedicadas a aplicações IoT, com foco em avicultura de precisão. A partir desta
revisão, é proposto um modelo de arquitetura de dados híbrida orientada para aplicações
IoT. A validação, testes das integrações e análises de resiliência das ferramentas são feitas
a partir de um simulador de dados sintéticos. Por fim, busca-se disponibilizar as métricas
e os dados gerados pelos sensores em um dashboard em tempo real.
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3 FUNDAMENTAÇÃO TEÓRICA

Nesta seção serão introduzidas as técnologias utilizadas neste trabalho, bem como
o tópico de avicultura de precisão e sua relação com IoT.

3.1 Big-Data e computação em nuvem
Ao se pensar em dispositivos que estão integrados à internet, em especial frente

aos grandes avanços da eletrônica, as possibilidades de emergência de tecnologias disrupti-
vas são impulsionadas como nunca antes foi visto. A partir disso, ideias de intregações
multiparadigmáticas, como Indústria 4.0, aprendizado de máquina, inteligência de negócio
e novas experiências de usuário deixam de ser promessas futurísticas para então se tornar
tendências da tecnologia.

Porém, um fenômeno que acontece ao se integrar muitos atuadores que possuem
algum tipo geração, interação ou análise de informações é a presença de um volume
de dados muito alto, acompanhado de um grande fluxo (valocidade), variabilidade e de
diferentes tipos de valores. Essas quatro características são conhecidas como os 4V ’s que
compõem o que é entendido hoje como Big Data, ou seja, problemas ou aplicações que
necessitam de uma infraestrutura de computação flexível, robusta e simples para comportar
todas as tarefas corporativas de forma resiliente, segura e escalável (MALEK et al., 2017).
De fato, com uma estimativa de mais de 1 trilhão de dispositivos integrados à Internet até
2030, garantir valor de negócio, bem como assegurar estabilidade e promover capacidades
analíticas sobre os dados deixa de ser uma tarefa simples e passa a exigir infraestruturas
que ofereçam características como processamento distribuído, comunicação de eventos em
tempo real, resiliência para suportar fluxos altos e variáveis de dados (high-throughput) e
capacidade de rápida escrita e leitura em memória para bancos de dados (MARJANI et
al., 2017).

Pensar em uma demanda tão alta por flexibilidade de recursos, combinado com
cenários que exigem escalabilidade rápida e criação de produtos impulsionado por execuções
ágeis, faz entender que uma infraestrutura computacional para prover uma solução de IoT
não é conveniênte em modelos de computação tradicionais, como por exemplo em estações
completamente físicas (conhecido também como on-premise (PAHL; XIONG; WALSHE,
2013)). Um paradigma atual que mitiga muitos desses problemas é o de Cloud computing
(computação em nuvem). Nele, o acesso a infraestruturas, plataformas e softwares são feitos
de acordo com a necessidade, onde a alocação ocorre via requisições ou sob demanda, e o
pagamento é respectivo ao uso (filosofia pay-as-you-go) (AUMONT et al., 2018). Muitas
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empresas atualmente oferecem tais serviços, e um dos principais deles são a Amazon Web
Services (AWS), Microsoft Azure, e Google Cloud (GCP), IBM Cloud, Oracle Cloud, Digital
Ocean, dentre muitos outros (JADEJA; MODI, 2012).

Ainda que seja possível realizar a migração de uma infraestrutura inteiramente
on-premise para à nuvem, alguns fatores exigem atenção e cuidado no momento de decisão,
como custos, disponibilidade e segurança (JADEJA; MODI, 2012). Desta forma, muitas
organizações acabam optando por implementar uma arquitetura híbrida, ou seja, distribuir
as suas diversas tarefas entre recursos físicos e em nuvem. Nesta abordagem, é possível
otimizar e flexibilizar o que já se tem disponível, bem como sofisticar e diversificar a
arquitetura com a possibilidade de, por exemplo, contratar serviços da nuvem apenas para
armazenamento ou qualquer outra tarefa específica (ODUN-AYO et al., 2018).

Neste trabalho, é utilizado a abordagem híbrida para alocar tarefas de processa-
mento em máquinas físicas e realizar o armazenamento na nuvem da AWS. A seção de
Metodologia Sec.(4) apresenta o escopo da proposta, bem como o detalhamento de cada
uma das tecnologias, softwares e serviços da nuvem utilizadas.

3.1.1 Edge e Fog computing

Ao se tratar de integrações de dispositivos à nuvem, é pertinente mencionar
algumas limitações comuns. Como já foi mencionado, uma rede IoT tem como uma das
principais características a conectividade intermitente, ou seja, é comum que sensores
tenham oscilações de acesso à Internet, o que impacta o uso e o valor dos dados gerados
(AUMONT et al., 2018). Além disso, muitos dispositivos não são apenas sensores, mas
como também atuadores, isto é, realizam uma determinada ação programada baseado
em um sinal de entrada. Em aplicações de veículos autônomos, medicina inteligente ou
agricultura de precisão, a falta de conexão de um atuador com a Internet pode ser fatal e
causar consequências graves.

Com isso, surge a necessidade de trazer o poder de processamento computacional,
usualmente alocado em clusters na nuvem, mais próximo aos sensores (também conceituado
como "Edge", ou borda). Qualquer camada de processamento que esteja conectada a ele e
que preceda contato com a nuvem é denominado de Fog-computing, isto é, "computação em
névoa", assim como demonstra a figura Fig.(1). Qualquer dispositivo que consiga suportar
este poder de processamento é denominado "nódo". Alguns dos principais problemas que
são atendidos mediante este modelo são (AUMONT et al., 2018):

• Mobilidade e reconhecimento geográfico: suporte a mobilização livre, mediante
reconhecimento dos pontos geográficos que se encontram tanto os sensores quanto a
sua própria localização;
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• Conectividade de baixa latência: rápida comunicação com data-centers, estações
físicas ou serviços de núvens, assim como com os seus sensores;

• Heterogeneidade e interoperabilidade: suporte a processamentos que servem à
diversas finalidades, onde todos os nódos devem ser inter-comunicáveis.

Figura 1 – Arquitetura de fog computing

Fonte: AUMONT et al. (2018)

Além os pontos citados, a camada de fog é utilizada usualmente para a realização
de algum nível de pré-tratamento de dados, como validações de esquema e segurança de
fonte (GUARDO et al., 2018). Neles ainda é comum existir abstrações de protocolos e
tecnologias de comunicação, os quais, no contexto de IoT, podem ser os mais variados, como
WiFi, LTE, Bluetooth, Zigbee, MQTT, XMPP, dentre outros (KALLA; PROMBAGE;
LIYANAGE, 2020).

Tratando-se dos nódos de fog, existem alguns tipos de dispositivos que possibilitam
a existência da camada intermediária de processamento. Alguns exemplos são routers,
switches, porém, o mais comum são os gateways, que desempenham a função de inter-
mediário entre os sensores e a nuvem (AUMONT et al., 2018). Porém, no trabalho de
CIRANI et al. (2015), o conceito de gateway é projetado além de um simples intermediário
de comunicação, e conceitua o que denominaram de IoT Hub, isto é, um nódo de fog
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que também herda funcionalidades procedurais e de processamento lógico sobre os sinais
gerados pelos sensores, cujo protótipo foi implementado através de um módulo de Raspberry
Pi (RPi) Model B.

No presente projeto, os nódos foram desenhados para suportar as mesmas funcio-
nalidades lógicas que no trabalho de CIRANI et al. (2015). Desta forma, a implementação
dos softwares foram via virtualização em imagens Docker, com suporte à arquiteturas
arm32 e arm64, isto é, compatíveis com módulos de Raspberry Pi. Uma contextualização
de todos os recursos será apresentado a seguir, e os detalhes de integração serão discutidos
na seção de Metodologia Sec.(4).

3.2 IoT: a integração dos objetos à internet
Internet of Things, ou IoT, é o termo atribuido à grande rede de dispositivos físicos

que se encontram interconectados através da Internet (LIYANAGE et al., 2020). Tais
dispositivos contém tecnologias de sistemas embarcados e são usados para comunicação,
sensoriamento e interação com seus ambientes externos. AUMONT et al. (2018) afirma
que sistemas IoT são usualmente caracterizados por possuirem: i) arquiteturas associadas
eficientes e escaláveis; ii) quantidade massiva de dispositivos e nódos interconectados;
iii) conectividade intermitente ou instáveis. A aplicação deste paradigma tecnológico se
encontra presente em diversos contextos, como automação residencial, gestão e monitora-
mento de tráfego, sensoriamento climático, agricultura de precisão e Big-Data e Analytics,
tornando-se assim um facilitador na criação de tecnologias de multi-domínio (AUMONT
et al., 2018; Shanzhi Chen et al., 2014; TALAVERA et al., 2017; LEE; LEE, 2015).

A disseminação de aplicações IoT pressupõe a orquestração de diversas tecnologias
interdependentes que estão, grosso modo, caracterizadas em quatro níveis assim como
mostra a figura Fig.(2): i) serviços e dispositivos, que, através de protocolos de conectivi-
dade como WiFi, Bluetooth, RFID ou LoRa, geram ou recebem dados; ii) conectividade
local e gateways, responsáveis por prover os dispositivos locais com conexão à Internet
e/ou capacidade de processamento lógico (chamado também de fog computing); iii) co-
nectividade global, a qual dispõe de recursos de rede, infraestrutura e data-centers para
prover conectividade e segurança dos dados gerados pelos dispositivos; iv) processamento
e aplicações, onde os dados coletados pelos dispositivos são usados para visualização,
tratamento, análise, aprendizado de algoritmos de Machine-Learning ou em qualquer tipo
de produto ou geração de valor (AUMONT et al., 2018).

Com a evolução de tecnologias de informação e comunicação, bem como do design
de sistemas IoT e arquiteturas, este paradigma promete transformar e trazer novas
possibilidades para os principais setores da economia, como produção industrial, transporte,
medicina e indústria agrária (TOKAREVA; VISHNEVSKIY, 2018). Além disso, novos
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Figura 2 – Níveis do paradigma IoT.

Fonte: AUMONT et al. (2018)

modelos de negócio e de valor são possíveis, dada a possibilidade de integrar grandes
tendências tecnológicas, como Indústria 4.0, Big-Data, Inteligência artificial e blockchain
(GUEVARA; SILVA, 2019; HAJIHEYDARI; TALAFIDARYANI; KHABIRI, 2019).

No Brasil, o cenário ainda é de instauração e adaptação, sendo, em sua grande
parte, um parque para implementação de técnologias cujas patentes são majoritariamente
de origem norte-americana ou chinesa (ALMEIDA et al., 2015). Ainda assim, promissor:
com uma expectativa de geração de 50 a 200 bilhões de dólares até 2025 apenas em
território brasileiro, está posicionada, segundo BNDES, como uma das maiores tendências
tecnológicas do setor de tecnologia da informação (SILVA; JESUS, 2020). O desenvolvi-
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mento no Brasil é atualmente orientado de acordo com o Plano Nacional de Internet das
Coisas, decretada pelo Governo Federal em 25 de Junho de 2019, a qual planeja fazer o
uso da tecnologia para promover melhorias sociais, incrementar produtividade em setores
industriais e fomentar atividade econômica.

3.3 Softwares e ferramentas
Aqui serão abordadas algumas das ferramentas cruciais para o desenvolvimento

deste projeto. Em suma, serão apresentadas as ferramentas de distribuição de eventos em
tempo real (stream), chamados também de "mensageria", os softwares de processamento
de dados e as técnicas de armazenamento de dados.

3.3.1 Streaming de dados e mensageria

O termo streaming de dados se refere, em suma, à habilidade de se extrair, tratar e
armazenar dados em tempo real. AKIDAU; CHERNYAK; LAX (2018) definem que um
sistema stream é orientado à aplicações onde os cojuntos de dados tendem, teoricamente,
ao infinito, cujo tratamento, transmissão e armazenamento devem ser feitos de elemento
a elemento. Em comparação ao tratamento de dados agregados (conjuntos finitos, com
operações orientadas aos batchs de dados), o paradigma de streaming implica em novos
desafios (BAHRI et al., 2021), como:

• Volumetria e uso de memória: a quantidade de eventos e registros que entram
em um stream possui margem a variabilidade extremamente alta, de forma que toda
a infraestrutura deve ser adaptável e escalável. Desta forma, assim como o conjunto
de dados tende ao infinito, a disponibilidade de recursos de memória alocáveis deve
ser compatível com a quantidade de registros sendo processado de forma distribuída;

• Tempo de execução e processamento: dependendo da aplicação, o tempo de
execução deve ser o mínimo possível para atender às requisições de negócio;

• Reestruturação de paradigma: muitos modelos de inteligência artificial e de
inteligência de mercado foram construidos, historicamente, visando o modelo tradici-
onal de processamento (batch, ou seja, dados agregados). Para modelos em stream, o
processamento deve ser feito em tempo real, e portanto pode implicar em mudanças
de modelos e algoritmos disseminados em organizações e comunidades.

Uma aplicação de streaming tem, como um dos principais componentes, um software
que realiza a distribuição de eventos em tempo real. Neste contexto, tais eventos são
também denominados "mensagens" (message), onde o gerenciamento dessas mensagens
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é feito via um message broker. Em geral, nos brokers, as mensagens podem ser enviadas
(publicadas) e resgatadas (consumidas), e esta interação ocorre mediante um "tópico"
(topic). Qualquer mensagem que é publicada a um tópico é enfileirada, de forma que
qualquer consumo é cronológico sobre a ordem de publicação.

Uma das principais vantagens de se utilizar um software de mensageria é a pos-
sibilidade de consolidar em uma ferramenta única todo o gerenciamento de integração e
comunicação entre sistemas. É possível suportar, para um mesmo tópico, diversas fontes
que realizam publicações, o que pode ser consumido por uma ou mais aplicações. Dentre
alguns exemplos de softwares de mensageria, temos o RabbitMQ, Apache Kafka, Mosquitto
MQTT e Apache Pulsar.

Neste projeto, implementamos duas camadas de comunicação por mensageria: uma
entre os sensores e os nódos de gateway, no qual a comunicação é feita via Mosquitto
MQTT, e outra entre os nódos de gateway e a camada de tratamento de dados, no qual a
comunicação é feita via Apache Kafka. Elas serão abordadas a seguir, e o detalhamento
da integração é feito na seção de Metodologia Sec.(4).

Em IoT, é mais desejável estabelecer a interconexão entre diversos dispositívos
através de redes que se comuniquem de forma simples, rápida e segura. As normas
implementadas para trocas de mensagens e mecanismos de autenticação via rede são
chamadas de "protocolos", e dentro do contexto de tecnologia de informação existem
diversos, como HTTP (Hypertext Transfer Protocol), FTP (File Transfer Protocol), SSH
(Secure Shell) e TCP/IP (Transmission Control Protocol/Internet Protocol), onde cada
um possui uma série de tipos de mensagens possíveis que podem ser trocadas, como POST,
GET, PUT e DELETE no contexto de HTTP (GODFREY, 2009).

Um protocolo que atende às necessidades de segurança e performance no contexto
de IoT é o "Message Queue Telemetry Transport"(MQTT), o qual é baseado no modelo de
publicação-consumo. Neste protocolo, os tópicos seguem uma estrutura hierárquica, onde
as mensagens (agnósticas de esquema de conteúdo), ao serem publicadas, são distribuidas
dentre todos os "clients"(usuários) conectados (AUMONT et al., 2018). A figura Fig.(3)
mostra exemplos de publicações e consumos que podem ser intermediados via um servidor
MQTT. Neste projeto, a camada de comunicação via protocolo MQTT é realiada através
do software Mosquitto MQTT (LIGHT, 2017).

Diferente do Mosquitto MQTT, o software Apache Kafka, um message broker
desenvolvido pela empresa LinkedIn e lançado em forma de código aberto, é orientado
à distribuição resiliente e de alta volumetria de dados, e possui suporte à paralelização
de brokers, persistência de dados, throughput alto e suporte a diversos tipos de clients
(GARG, 2013). Por ser distribuido, as mensagens podem ser armazenadas em um ou mais
brokers, onde a coordenação de mensagens é feito através de uma instância de Apache
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Figura 3 – Exemplo de publicação e consumo via MQTT

Fonte: AUMONT et al. (2018)

Zookeeper (BURNS, 2018). A figura Fig.(4) mostra exemplos de publicações e consumos
que podem ser intermediados via um servidor Apache Kafka.

Figura 4 – Exemplo de publicação e consumo em brokers Kafka

Fonte: WU; SHANG; WOLTER (2020)

A quantidade de brokers que as mensagens são replicadas é chamada de "fator
de replicação", e é usada para provisionar resiliência e redundância de mensagens em
aplicações que exigem extrema segurança na entrega de mensagens. Ainda, para cada
broker, as mensagens são inseridas em partições específicas, de forma que, no momento
de criação dos tópicos, cada partição do tópico é mapeado para a partição respectiva dos
brokers no qual a mensagem será replicada (GARG, 2013). Por exemplo, em um caso de
um cluster de 4 brokers, um tópico com fator de replicação e particionamento iguais à
2 e 10, respectivamente, pode ter a primeira partição do tópico atribuidas a partição 1
dos brokers 1 e 3, da segunda partição do tópico atribuidas a partição 2 dos brokers 2 e
4, e assim por diante. A figura Fig.(5) mostra demonstra o comportamento do fator de
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replicação e do particionamento.

Figura 5 – Fator de replicação e particionamento

Fonte: GARG (2013)

3.3.2 Esteira de processamento de dados

O modelo padrão de tratamento de dados é concebido conceitualmente com a ideia
de processamentos em batch: conjuntos de dados com volumetria pré-definida (bounded),
alta entropia e que, ao passar por um processo de transformação, são estruturados em
conjuntos que expressam maior valor de negócio, o que é representado na figura Fig.(6a)
(AKIDAU; CHERNYAK; LAX, 2018). Porém, é comum que os dados de entrada não
sejam fixos, mas sim incrementais (unbounded), o que implica em processos e esteiras de
tratamentos que operem sobre batchs incrementais (conhecidos também como mini-batch,
representado na figura Fig.(6b)) ou em streams (figura Fig.(6c)).

As transformações feitas dependem diretamente do conteúdo e de como os dados
devem ser tratados, e podem ser as mais variadas possíveis. Usualmente elas são trans-
formações do tipo orientado à elemento (element-wise, correspondência de registros de
1 : 1), de agrupamento (grouping, correspondência de de registros m : n) ou de composição
(composite, correspondência de campos m : n) (AKIDAU; CHERNYAK; LAX, 2018).

Neste projeto, as camadas de transformação são implementadas em stream e se
encontram em dois pontos. O primeiro, o qual faz uma pré-validação dos dados gerados
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Figura 6 – Paradigmas de processamento de dados.

(a) Transformação de batch com entrada fixa (bounded)

(b) Transformação de batch com entrada incremental (unbounded)

(c) Transformação de streams (unbounded)

Fonte: AKIDAU; CHERNYAK; LAX (2018)

pelos sensores, é feito via um script em Python que recebe os dados em um servidos MQTT
e envia-los aos tópicos Kafka. O segundo é uma esteira de dados Nifi, que será discutido em
maior detalhes a seguir. Toda a integração é detalhada na seção de Metodologia Sec.(4).

O Apache Nifi, originalmente lançado como NIagra FIles, é uma solução orientada
à manutenção e desenvolvimento de fluxos e esteiras de dados com uma tecnologia de
processamento em fluxo ("data in motion") (ISAH; ZULKERNINE, 2018). Alguns dos
princípios que guiam o desenvolvimento do projeto são: i) garantia de entrega dos dados
consumidos e processados, isto é, o sistema é resiliênte à possíveis quebras; ii) priorização
de enfileiramento de eventos, assim como sistemas de mensageria; iii) armazenamento em
memória dos eventos para disponibilização rápida (data buffering) (CHATTI, 2019).

Cada registro que entra no sistema é considerado um "arquivo", o qual possui um
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conteúdo e atributos (meta-dados). Esses arquivos são chamados de "flow-files", ou seja,
arquivos que se encontram em fluxos. A cofiguração dos fluxos é feita via uma interface
visual, onde cada processo (processor) é acionado em cadeia, e seguem caminhos específicos
dependento do status de execução (sucesso, falha, retentativa, ou saídas específicas).
Os processos podem ser agrupados no que se é chamado de "process group", e esses
agrupamentos podem ser exportados como templates para modularização de fluxos. As
figuras Fig.(16), Fig.(17) e Fig.(18) demonstram algumas das esteiras desenvolvidas para
este trabalho.

3.3.3 Armazenamento de dados

Atualmente existem diversas maneiras de se armazenar grandes volumes de dados, e
a escolha mais adaptada da arquitetura e de seus componentes depende de diversos fatores
como consumo pelos usuários, escalabilidade, performance e integrabilidade, possíveis
riscos, adaptabilidade, dentre muitos outros (MALASKA; SEIDMAN, 2018). Porém, é
cada vez mais recorrente uma arquitetura de dados organizacional refletir camadas de
data-lake, dados estruturados (bancos de dados relacionais) e dados não estruturados
(bancos de dados NoSQL).

Cada uma dessas camadas serão discutidas a seguir, abordando os conceitos que
serão usados na modelagem da integração dos serviços. Todas elas foram implementadas
em serviços da AWS, como o S3, DynamoDB e RDS.

A alta volumetria, variabilidade e velocidade associado ao universo de Big Data,
combinado com a agilidade de projetos de analytics e a demanda por gerar valor a partir
dos dados à disposição acabam por impor novas necessidades de infraestruturas.

Neste contexto, emerge a ideia de data-lake: um macro-ambiente no qual todos os
dados, independente de sua origem ou de sua forma, são armazenados e acessíveis a uma
ampla gama de usuários. O objetivo é oferecer ao negócio a habilidade de se "servirem"
("self-service") de tais recursos de forma que não demandem ajudas de áreas de tecnologia
e que consumam os dados de forma democratizada (GORELIK, 2019).

Um caso clássico de uso de data-lake é o processo de limpeza e estruturação de
dados. É usual realizar uma série de operações e transformações em cima dos conjuntos
que se dispõe a fim de se agregar valores de negócio, e usualmente este processo se
chama "Extract, Transform, Load" (ETL) (VASSILIADIS; SIMITSIS; SKIADOPOULOS,
2002). Por finalidade de rastreabilidade e organização, é importante manter cada etapa de
tratamento de armazenados em diferentes níveis.

Existem diversas ferramentas associadas a um ambiente de data-lake. A mais famosa
é o Apache Hadoop, uma plataforma de armazenamento massiva, paralelizado e escalável.
Muitas tecnologias e serviços oferecidos por provedores de nuvem possuem como base o
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Figura 7 – Diagrama de relacionamento de um modelo star schema.

Fonte: PETROV (2019)

Apache Hadoop, como o AWS Simple Storage System (AWS S3) e o Azure Blob Storage
(NARGESIAN et al., 2019).

Bancos de dados relacionais (Relational Database Management System, RDBMS)
são softwares de manutenção de dados que já se encontram estruturados e que usualmente
servem à alguma finalidade analítica ou de negócio. Os dados são estruturados em tabelas,
e levam o termo "relacional" dado que tais entidades podem assumir relações entre sí
através de chaves primárias (primary key) e chaves estrangeiras (foreign key) (PETROV,
2019).

As tabelas devem ser criadas e pré-adaptadas para hospedar os dados que chegam,
de forma que existem inúmeras maneiras de se modelar tais relacionamentos e entidades.
Um paradigma de modelagem muito usual é a modelagem dimensional, onde os dados se
encontram estruturados de tal forma a reduzir redundâncias (isto é, o mesmo valor escrito
em diversas linhas, colunas, tabelas e etc.) através do que se é chamado de "dimensões",
ou seja, tabelas que são cruzadas para se extrair uma determinada informação sem a
necessidade de se replicar o mesmo conteúdo em diversos lugares. Tabelas que possuem
relações diretas com diversas dimensões seguem o que se é conceituado como "star schema"
(esquema "estrela") (PETROV, 2019), assim como demonstra o diagrama da figura Fig.(7).

Bancos de dados relacionais são usualmente implementados, no contexto de apli-
cações organizacionais, em Data Warehouses (DW), isto é, ambiente de armazenamento
estruturados de dados que são consumidos por equipes analíticas para a criação de re-
latórios e dashboards. Esses consumo ocorre através de queries, isto é, comandos escrito
em linguagem SQL (Structured Query Language) que executam uma dada chamada em
cima das tabelas mencionadas e retornam os dados correspondentes. Atualmente, com
a evolução de diversas tecnologias de data-lake, ambientes DW deixaram de focar no
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armazenamento global de informações e passaram a provisionar soluções analíticas que
requerem dados extremamente organizados e estruturados, alimentados por múltiplas
fontes e que reproduzem acurácia histórica (GORELIK, 2019).

Em contrapartida às bases RDBMS, existem bancos de dados que são orientados
ao armazenamento de dados não relacionais, isto é, que não possuem o mesmo uso que
dados estruturados. Esses bancos são amplamente conhecidos como NoSQL, e realizam
o armazenamento de diversos tipos de dados, estruturados em diversas formas, como
estrutura de documento (MongoDB e DynamoDB) ou de esquema chave-valor (Redis)
(Jing Han et al., 2011). Algumas das vantagens de usar bases não relacionais são baixo
custo, operações rápidas de leitura e escritas e flexibilidade de conteúdo (CATTELL, 2011).

3.3.4 Containers, aplicações virtualizadas e Docker

O conceito de virtualização é comum no contexto de desenvolvimento, e usualmente
está associado com práticas que permitem e promovem o isolamento de um software
abstraindo dependências que possam ou não estar configuradas adequadamente na máquina
hospedeira (host). No universo de aplicações, é comum o uso da ferramenta Docker para
realizar virtualizações, onde cada instância de um software virtualizado (chamado também
de serviço Docker) é contido em ambientes chamados "containers" (KROPP; TORRE,
2020). Cada unidade executável de um container é chamada de "imagem", a qual possui
como componentes a própria aplicação, bibliotecas de dependência, variáveis de ambiente
e arquivos de configuração.

Por mais similares que sejam a máquinas virtuais, os containers Docker abstraem
os recursos da máquina hospedeira através do módulo runC, de forma que tais recursos
são compartilhados diretamente com as instâncias das imagens em execução. Desta forma,
qualquer máquina que possua o Docker instalado é capaz de rodar os containers de
forma abstrata e exatamente igual ao ambiente em que foi desenvolvido, garantindo
flexibilidade, interoperabilidade dentre diferentes máquinas e ambientes (desenvolvimento
local ou nuvem) e escalabilidade (KROPP; TORRE, 2020). No contexto deste projeto,
BELLAVISTA; ZANNI (2017) desenvolveram uma prova de conceito de implementação
gateways IoT via conteinerização da camada de middleware que, como resultado, promoveu
escalabilidade de desenvolvimento e orquestração dinâmica de atualizaçõs e configurações.

A unidade básica de imagens Docker parte do que se chama "Dockerfile", isto é, um
arquivo que contém as instruções de criação do container. Com este arquivo, é possível
compilá-lo (build) em uma imagem executável. O esquema de compilação é baseado em
camadas, ou seja, cada comando contido no arquivo é uma camada que será executada em
ordem, e a atualização de cada comando implica apenas na alteração da camada respectiva.
É comum reaproveitar containers e imagens oficiais já desenvolvidas de projetos conhecidos
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Figura 8 – Diagrama de containers Docker e consumo de recursos do host.

Fonte: AKIDAU; CHERNYAK; LAX (2018)

ao invés de desenvolve-los, o que, por padrão, é importado diretamente do repositório
oficial (registry) do Docker, chamado de Docker Hub.

Aplicações usualmente exigem não apenas um, mas diversos softwares em execução
simultânea, integrados por uma rede interna e com compartilhamento de volumes (dados)
(DUSIA; YANG; TAUFER, 2015). Desta forma, é usual realizar estas integrações via o
software Docker Compose, uma ferramenta orientada a execução simultânea de diversos
containers Docker integrados e que se encontram definidos em um arquivo YAML (JANGLA,
2018).

Neste projeto, usamos o Docker Compose para definir os softwares que devem ser
executados e integrados em cada uma das camadas, sendo cada serviço apontado para
arede de conexão Docker da camada. Em específico, criamos a imagem do serviço Python
a partir de um Dockerfile para que sejam instaladas as bibliotecas de dependência. Os
detalhes desta integração serão explicados posteriormente.

3.4 Avicultura de precisão
O uso de IoT para monitoramento de estações de avicultura já foi abordado em

diversos estudos na literatura. Um dos principais desafios é realizar o monitoramento
de ambiente, como temperatura e umidade, a fim de se manter as condições ótimas
para produções de ovos e da avicultura. Ainda, com o uso de uma infraestrutura de
monitoramento, é possível utilizar de algoritmos e métodos de aprendizado de máquina
para realizar a gestão eficiente de produção e alimentação, detecção de anomalias e análises
comportamentais, assim como mostra a figura Fig.(9).

A ONG "Humane Farm Animal Care DBA Certified Humane" disponibiliza em
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Figura 9 – Exemplo de esteira de dados para aplicações de Inteligência Artificial em
estações de avicultura.

Fonte: SINGH et al. (2020)

seu portal o acesso à diversas diretrizes e normas de cuidados de animais. Especificamente
se tratando de produção de aviculturas, a organização elenca como fatores principais
associados ao ambiente i) a temperatura, que deve ser em média de 41℃; ii) a luminosidade,
que deve ser no mínimo equivalente à 20 lux; iii) concentração de amônia (não deve exceder
25 p.p.m.), monoxido (no máximo 10 p.p.m.) e dióxido de carbono (menor que 3000
p.p.m.); iv) umidade relativa, que deve ser preferencialmente de 50 à 75%, e ventilação de
ar (HUMANE FARM ANIMAL CARE, 2014). Outros fatores, como infraestrutura das
estações, alimentação e hidratação também são apontados pela organização, porém, para
o presente projeto, usamos as métricas temperatura, umidade relativa, concentração de
amônia e temperatura para desenvolver a prova de conceito da arquitetura de dados.

SINGH et al. (2020) propõem um modelo de arquitetura orientado a inteligência
artificial (IA), com a finalidade de prever possíveis doenças com base em parâmetros
sonoros, imagens e vídeos. Já DEBAUCHE et al. (2020) utilizam IA para examinar a
qualidade do ar a partir de métricas de concentração de monóxido e dióxido de carbono,
bem como a concentração de amônia.

À respeito do impacto desses fatores, eles foram escolhidos por apresentarem grande
impacto no bem estar da avicultura. Por exemplo, é conhecido que a temperatura possui
influência sobre a qualidade de ingestão de nutrientes e da dieta das aves (CHARLES;
GROOM; BRAY, 1981). Ainda, aves que se encontram submetidas a concentrações de
amônia acima de 25 p.p.m. contraem irritações nas membranas mucosas dos olhos e do
sistema respiratório (WATHES; KRISTENSEN, 2000). Contração de doenças infecciosas
por insuficiência respiratória também estão relacionadas a fatores como luminosidade e
umidade relativa do ambiente (XIONG et al., 2017).
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Ao se tratar de arquitetura de dados, LASHARI et al. (2018) propõe um modelo
de monitoramento de estações de avicultura baseado em fog computing, assim como é
apresentado na figura Fig.(10). O nódo intermediador é um gateway, hospedado em um
Raspberry Pi, que desempenha o papel de intermediar os dados recebidos por sensores e
enviá-los à uma unidade de processamento (esteira de dados). Já RAJ; JAYANTHI (2018)
introduz uma camada de processamento entre a nuvem e os nódos de gateway, a qual é
hospedada em um servidor on-premise e é destinada a processar os dados recebidos pelos
gateways.

Figura 10 – Arquitetura de dados proposta por LASHARI et al. (2018).

Fonte: LASHARI et al. (2018)

Neste trabalho foi adotada a abordagem da camada on-premise, ou seja, integramos
os dados recebidos pelos gateways à softwares de mensageria e tratamento em stream,
hospedados em máquinas locais e dedicadas. Na seção de Metodologia Sec.(4) serão
apresentados os componentes da arquitetura.
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Figura 11 – Arquitetura de dados proposta por RAJ; JAYANTHI (2018).

Fonte: RAJ; JAYANTHI (2018)
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4 METODOLOGIA

Nesta seção serão detalhados os passos seguidos para o desenvolvimento do estudo.
Em suma, eles compreendem duas grandes fases, que são as etapas de desenvolvimento
geral e específico. Na primeira, foram produzidos códigos de base que provisionam a
integração de todos os serviços discutidos na seção de Fundamentação Teórica (Sec.(3))
com a finalidade de servir à aplicações IoT que contenham as camadas de arquitetura
propostas neste estudo. Na segunda, os insumos gerados pela primeira etapa foram usados
para modelar um cenário de avicultura de precisão, a qual foi caracterizada por uma
modelagem de dados e de recursos (brokers e tópicos Kafka, nódos de gateway) para refletir
especificidades do cenário em questão.

4.1 Etapa geral: Modelagem de integração de serviços
A arquitetura geral implementada neste estudo segue a representação da figura

Fig.(12). Ela é consituida de três camadas principais:

• Gateway: camada localizada em cada um dos dispositivos de sistema embarcado
(e.g., Raspberry Pi), é encarregada por hospedar um servidor MQTT e um script
Python que realiza o consumo deste servidor, bem como a limpeza e validação de
estrutura de dados gerados pela fonte;

• Regional: camada responsável por receber em um cluster Kafka os dados validados
por cada nódo de gateway, bem como realizar, via NiFi, tratamentos, análises,
aglomerações e operações lógicas com base no conteúdo do dado. Por fim, envia os
dados à nuvem;

• Nuvem: camada que faz uso de serviços e ferramentas proprietárias (AWS), a fim
de prover armazenamento tanto em forma aglomerada (Batch) quanto em estrutura
de documento (tempo-real, Stream)

Para os níveis de gateway e regional, a integração de todos os softwares foi vir-
tualizada via containers Docker, de forma que para cada camada foi escrito um arquivo
docker-compose.yml. Nesses arquivos são definidas as redes de conectividade de cada um
dos serviços, que seguem a estrutura lógica do diagrama apresentado na figura Fig.(13).
Desta forma, todos os nódos de gateway devem ter o serviço de Python com acesso à
rede externa da camada regional, assim como os dispositivos IoT devem ter acesso à rede
externa do gateway.
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Figura 12 – Representação da arquitetura geral.

Fonte: Autor
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Figura 13 – Diagrama de conexões de serviços Docker.

Fonte: Autor

Para a geração dos dados sintéticos, foi utilizada a aplicação IoT-data-simulator
(IBA-GROUP-IT, 2020), a qual suporta a configuração de diversos sensores, modelagem
do esquema dos dados, conexão com aplicações de mensageria e execução de diversas
sessões simultaneamente. Para cada sessão, é possível salvar um arquivo de extensão .json
que detalha a configuração da sessão, o esquema de dados, sensores utilizados, tópicos
publicados e a frequência de sinal.

Todo o código foi desenvolvido e publicado no GitHub, e se encontra atualmente
no repositório igor-yamamoto/tcc_proj (YAMAMOTO, 2021). Os arquivos referentes
às camadas de gateway e regional estão, respectivamente, nos diretórios gateway/ e
regional/. Os arquivos de configuração do servidor MQTT e a credencial de acesso, bem
como o template de base da aplicação IoT-data-simulator, estão todos no diretório gateway/
templates/. O tempate NiFi se encontra no diretório regional/templates/. O diretório
examples/ é destinado para armazenar usos e aplicações dos modelos desenvolvidos, e,
para este projeto, foi usado para a etapa de desenvolvimento específico.

A tabela Tab.(1) apresenta detalhes de especificações de cada uma das tecnologias
utilizadas nesta etapa.

4.1.1 Gateway

Em cada nódo de gateway estão hospedados os serviços Mosquitto e Python. O
serviço de Python é orientado ao processamento das mensagens enviadas ao servidor
MQTT, e portanto a sua execução foi configurada como dependente deste serviço. Ainda,
em casos de queda do sistema, a política de reinicialização foi configurada para acontecer
sempre que o serviço finalizar a execução de forma inesperada (restart: always).

As configurações dos brokers MQTT em cada nódo são definidas em arquivos
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Tabela 1 – Especificações de softwares utilizados na implementação da etapa geral.

Escopo Ferramenta Imagem docker Rede conectada

Fonte de
dados

IoT-data-
simulator - gateway_network

(externo)

Gateway

Mosquitto amd64/
eclipse-mosquitto gateway_network

Python amd64/
python:3.9.7-alpine3.14

gateway_network,
regional_network

(externo)

Regional

Zookeeper confluentinc/
cp-zookeeper:6.2.0 regional_network

Kafka confluentinc/
cp-kafka:6.2.0 regional_network

Nifi apache/
nifi:1.13.2 regional_network

Nuvem
AWS S3 - -
AWS

DynamoDB - -

que se encontram no caminho gateway/templates/mosquitto/mosquitto.conf, e são
mapeados diretamente aos arquivos de configuração das imagens Docker (mosquitto/
config/mosquitto.conf). Neste arquivo também é feito a configuração de segurança,
como permissões e credenciais de acesso (mapeando o arquivo gateway/templates/
mosquitto/mqtt_passwd), configurado para este exemplo o usuário "tcc_test"e a senha
"12345 ".

Para o Python, a subida do serviço é diferente em relação aos demais, pois nele
constrói-se um container (build apontando ao caminho gateway/builds/python/) baseado
na imagem python:3.9.7-alpine3.14, já instalando as dependências definidas no arquivo
code/requirements.txt e iniciando o consumo e produção das mensagens (arquivo
code/scripts/mqtt_consumer.py, método run). Para este serviço, as bibliotecas de
dependência são:

• paho-mqtt: biblioteca de conexão, consumo e produção de mensagens em brokers
MQTT

• python-decouple: módulo de leitura e uso de variáveis de ambiente. Útil para
desenvolvimento, testes e manutenção de hiperparâmetros e/ou credenciais
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• kafka-python: biblioteca de conexão, consumo e produção de mensagens em brokers
Kafka

Além do script de consumo, são copiados também para a imagem as classes de conexão com
brokers (/code/scripts/connectors.py) e o pipeline de tratamento (/code/scripts/
pipeline.py). Os módulos foram escritos para que, preferencialmente, qualquer configu-
ração de variável fosse definida no arquivo de variáveis de ambiente /code/scripts/.env
e qualquer lógica de tratamento dos dados consumidos fossem modeladas a partir do
método main do arquivo de pipeline. Para esta etapa de desenvolvimento, o brokers de
transformação escrito realiza apenas a validação do esquema de dados em json, mas é
possível integrar qualquer lógica de tratamento de forma que ele tenha como resultado a
mensagem em formato de texto (string).

A estrutura lógica do serviço Python segue o fluxograma da figura Fig.(14).

Figura 14 – Fluxo lógico do serviço Python.

Fonte: Autor

O desenvolvimento deste projeto foi baseado nas imagens Docker apresentadas
na tabela Tab.(1). Para a camada de gateway, todas estão disponíveis no DockerHub
(registry oficial do Docker), compiladas tanto em arquiteturas padrões (amd64, orientado
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à processadores Intel), quanto arquiteturas arm64 e arm32 (arqueturas presentes em
processadores de raspberry, como o Broadcom BCM2711 SoC).

4.1.2 Regional

A camada regional é constituida de um cluster Kafka e uma esteira NiFi. Esta
camada é destinada para ser usada de forma única e centralizada, estando todos os
gateways conectados à ela. Para tal, a implementação de qualquer especificidade deve ser
modelado dentro do arquivo regional/docker-compose.yml (quantidade de brokers do
cluster, quantidade de nódos do serviço Zookeeper, arquivo de configuração do NiFi, etc.).

Para a etapa geral, foi configurado apenas um broker Kafka orquestrado pelo
Zookeeper. A porta mapeada para comunicação com o Zookeeper foi a porta padrão, i.e.,
2181. Scripts bash foram criado para auxiliar na criação de tópicos implementados neste
projeto, e se encontram no diretório regional/scripts/.

Figura 15 – Esteira de dados NiFi geral

Fonte: Autor

O template de todos os processos NiFi estão apresentados nas figuras Fig.(15),
Fig.(16), Fig.(17) e Fig.(18). Ele possui três processos principais:
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Figura 16 – Esteira de consumo Kafka

Fonte: Autor

• Consumo de tópicos Kafka: processo destinado a consumir todos os eventos regis-
trados no tópico test-topic (figura Fig.(16)). A partir do conteúdo da mensagaem,
é feito também uma extração dos valores de identificador único global (GUID) do
dispositivo, bem como o contexto do evento (nesta etapa, configurado como "teste");

• Geraração de arquivos aglomerados: processo destinado ao serviço AWS S3
(figura Fig.(17)), no qual os dados coletados são transformados para estrutura posici-
onal (formato .csv), aglomerados, transformados em arquivos de estrutura colunar
(formato .parquet) e gravados no bucket test-tcc-bucket particionadas por data
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Figura 17 – Esteira de ingestão S3

Fonte: Autor

e hora (caminho test-tcc-bucket/test/date=${yyyy-MM-dd}/hour=${HH}, onde
${yyyy-MM-dd} e ${HH} representam a data e a hora, respectivamente);

• Gravação de eventos em tempo real: processo destinado ao serviço AWS Dy-
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Figura 18 – Esteira de ingestão DynamoDB

Fonte: Autor

namoDB (figura Fig.(18)), onde cada evento é tratado para armazenar o campo
timestamp_ttl, o qual marca a data-hora de expiração do evento na base (configu-
rado, para este projeto, como um dia a partir do momento de geração do evento) em
formato unix time (quantidade de segundos a partir to tempo epoch, definido como
01/01/1970, 00:00:00), e então grava o evento na tabela DynamoDB test-table.

Para a execução das tarefas mencionadas, foram configurados controladores de
serviços, que são serviços compartilháveis entre múltiplos processos. No contexto deste
projeto, foram configurados os controladores apresentados na figura Fig.(19), que são de
conversão e leitura de esquema de dados (CSVReader, CSVRecordSetWriter, JsonTreeRea-
der e ParquetRecordSetWriter, todos da versão 1.13.2), assim como um de configuração de
credenciais de acesso à AWS (AWSCredentialsProviderControllerService 1.13.2).
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Figura 19 – Controladores de serviços NiFi usados no projeto

Fonte: Autor

4.1.3 Nuvem

Os serviços utilizados da nuvem foram S3 e DynamoDB, do provedor AWS, assim
como apresentado na figura Fig.(20). Eles são destinados para fazer o armazenamento de
dados aglomerados (data-lake, batch) e em tempo real (NoSQL, stream), respectivamente.
A configuração foi feita de forma padrão, ou seja, da maneira recomendada pela própria
AWS, exceto para as tabelas DynamoDB, onde foi configurado o mapeamento de um
atributo de expiração (time to live, TTL), assim como mostra a figura Fig.(20b).

É válido mencionar também que, para a etapa específica, além dos serviços S3 e
DynamoDB, foi usado o AWS RDS para hospedar um banco de dados Postgres e então
possibilitar consumir os dados de forma analítica em um Dashboard. Maiores detalhes
serão discutidos na próxima seção.

Figura 20 – Detalhes de serviços AWS S3 e AWS DynamoDB

(a) Detalhes do AWS S3

(b) Detalhes do AWS DynamoDB

Fonte: Autor
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4.2 Etapa específica: Modelagem de experimento conduzido
Com os insumos gerados na primeira etapa, foi modelado um experimento orientado

à avicultura de precisão. Nesta subseção, serão apresentados os detalhes desta modelagem,
e as principais especificades de arquitetura. Em suma, o experimento consiste de duas
estações de monitoramento, denominadas por A e B, na qual para cada uma é atribuido N

sensores e um gateway. O cluster Kafka foi configurado, desta vez, com três brokers, sendo
os tópicos dividos por tipo de métrica levantada pelos sensores (chamado aqui também
de "contexto"). O diagrama da figura Fig.(21) apresenta a estrutura lógica de todos os
softwares usados nesta arquitetura.

Todos os arquivos referente à esta etapa se encontram no diretório examples/
avicultura/. Os arquivos de template do simulador, bem como configurações dos gateways,
se encontram nas pastas gateway-A/templates/ e gateway-B/templates/ para os ga-
teways A e B, respectivamente. Scripts bash de criação de tópicos Kafka se encontram em
regional/scripts/, e o template da esteira NiFi se encontra em regional/templates/.

4.2.1 Dados sintético, modelagem e especificações

De acordo com o que foi apresentado na seção Fundamentação Teórica (Sec.(3)),
alguns dos principais fatores que possuem influência sobre o bem estar de uma cultura
de aves são temperatura, concentração de amônia, umidade e luminosidade (HUMANE
FARM ANIMAL CARE, 2014). Existem diversos dispositivos que fazem o sensoriamento
de tais condições, onde o conteúdo e a frequência de sinal é usualmente modelado por
microcontroladores. Para este experimento conceitual, as características de cada tipo
de sensor foi modelado de acordo com as informações da tabela Tab.(2). Nela também
é apresentada a quantidade de cada um dos sensores presentes para cada estação de
monitoramento.

Tabela 2 – Especificações de sensores principais modelados no experimento de caso.

Tipo de sensor Frquência de sinal Faixa de valores Qntd. A Qntd. B
Temperatura 1 minuto 37 ∼ 40 (℃) 3 4

Concentração de Amônia 30 segundos 5 ∼ 7 (p.p.m.) 4 5
Umidade relativa 5 minutos 60 ∼ 65 (%) 3 4
Luminosidade 5 minutos 25 ∼ 30 (lux) 2 3

Fonte: HUMANE FARM ANIMAL CARE (2014)

O conteúdo do sinal emitido por eles é estruturado em um esquema de chave-valor
(json), e seguem estrutura comum, que é constituido dos seguintes campos:

• device_guid: texto de identificador único do dispositivo
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Figura 21 – Representação da arquitetura integrada para o caso estudo.

Fonte: Autor

• guid: texto de identificador único do sinal

• timestamp: número inteiro de marcador do momento de geração do sinal, em formato
unix time

• context: texto de classificador do tipo de sensor

• Valor de medida: número inteiro de valor da medida do sensor. Nome do campo
é dependente do tipo de medida (e.g., se temperatura, então campo de medida é
temperature)
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Código 4.1 – Exemplo de sinal gerado por um sensor de temperatura.
1 {

2 " device_guid ": "001",

3 "guid": "1b878216 -2b66 -45d7 -97d3 - f859233ae85e ",

4 " timestamp ": 1634484382,

5 " context ": " temperature ",

6 " temperature ": 25

7 }

4.2.2 Gateways e pré-tratamento de dados

Para cada uma das estações de monitoramento foi configurado um gateway, de-
nominados gateway-A e gateway-B. Em cada um deles foi criada uma rede de conexão
interna, onde os serviços de Python se conectam à rede da camada regional via conexão
externa, assim como demonstra a figura Fig.(22).

Figura 22 – Diagrama de redes dos serviços Docker para estudo de caso

Fonte: Autor

A esteira de tratamento do Python é semelhante à desenvolvida na primeira
etapa, acrescentando apenas um novo processo que realiza a publicação no tópico Kafka
devices-dump das mensagens que não ocorre êxito no mapeamento de contexto.
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4.2.3 Cluster Kafka e esteira de dados Nifi

O Cluster Kafka foi configurado com três brokers, denominados de broker-a, broker-
b e broker-c, com portas mapeadas à 29091, 29092 e 29093, respectivamente. Todos eles
apontam a um único orquestrador Zookeeper, pela porta 2181.

Os tópicos no nível regional foram separados por contexto, a fim de se simplificar
as operações lógicas na esteira NiFi. No total são 5 tópicos distintos: devices-temperature,
devices-ammonia, devices-luminosity, devices-humidity e devices-dump. Todos eles foram
criados com fator de replicação de 2 nódos e 10 partições cada, e podem ser iniciados
diretamente através do script bash de criação regional/scripts/kafka_create_topic.
sh.

Exceto ao tópico devices-dump, todos as mensagens são salvas tanto em batch
quando em stream. Para cada tópico Kafka, é configurado um processo como é apresentado
na figura Fig.(16), e a esteira resultante é apresentada na figura Fig.(23). Uma mudança
adicional foi feita sobre o processo de gravação em tabelas DynamoDB, onde foi criado
para cada tabela um processo separado, assim como demonstra a figura Fig.(24).

Figura 23 – Esteira geral

Fonte: Autor
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Figura 24 – Esteira para salvar em tabelas DynamoDB

Fonte: Autor

4.2.4 Armazenamento de dados em Stream e Batch

O armazenamento em batch e stream foi particionado em contexto, assim como
os tópicos Kafka. Os arquivos parquet foram salvos no bucket iot-stream-tcc, todos
particionados por data e hora. As tabelas do AWS DynamoDB foram configuradas da
mesma maneira descrita na etapa geral, e levam os nomes iot-stream-ammonia, iot-stream-
humidity, iot-stream-luminosity e iot-stream-temperature.

Além de tais serviços de armazenamento, foi usado também o banco de dados
Postgres SQL para armazenamento de dados estruturados. Para cada contexto foi criada
uma tabela, chamadas de tabelas fatos, onde todas elas consomem uma tabela uma
única tabela, chamada de dimensão, a fim de se resgatar informações dos dispositivos
da base. No total, as tabelas criadas foram ft_ammonia, ft_humidity, ft_luminosity,
ft_temperature e dm_device, todas sobre o esquema iotdb. O diagrama da figura Fig.(25)
resume o relacionamento entre as tabelas, bem como os campos, esquema e nulabilidade
de cada uma. Esta base foi usada para alimentar um Dashboard do Google Data Studio,
sumarizando as métricas recebidas dos dispositivos. Detalhes deste painel será discutidos
em maiores detalhes na seção de Resultados Sec.(5).
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Figura 25 – Diagrama de tabelas no banco de dados Postgres, esquema iotdb

Fonte: Autor
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5 RESULTADOS

Nesta seção serão apresentados os principais resultados obtidos do estudo realizado.
Nele constam os resultados das integrações dos softwares, análise do cluster Kafka, bem
como o consumo e a disponibilização dos dados na nuvem em formato de dashboard.

5.1 Integração de serviços

5.1.1 Gateway

Os testes dos gateways foram realizados através de comandos de execução sobre o
container Docker do serviço Mosquitto. Para garantir, em um primeiro momento, que as
mensagens estavam sendo recebidas pelo servidor, e portanto passíveis de serem consumidas
por demais serviços, foi realizada a subida da imagem, o consumo de um tópico de teste
chamado test message e então a publicação de mensagens. As linhas de código Cód.(5.1)
e Cód.(5.2), escritas em linguagem bash, foram usadas para realizar o consumo e a produção
de mensagens, respectivamente. A imagem Fig.(26) mostra o resultado da execução de
tais comandos em um terminal shell, acompanhado logo abaixo dos logs de execução do
comando.

Código 5.1 – Comando de consumo de tópicos mosquitto MQTT

docker−compose exec mosquitto \
mosquitto_sub \
−i test−consumer \
−h l o c a l h o s t \
−t " dev i c e s " \
−u tcc_tes t \
−P 12345

Código 5.2 – Comando de produção em tópicos mosquitto MQTT

docker−compose exec mosquitto \
mosquitto_pub \
−i test−producer \
−h l o c a l h o s t \
−t " dev i c e s " \
−m ’ t h i s ␣ i s ␣a␣ t e s t ␣message ’ \
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−u tcc_tes t \
−P 12345

Figura 26 – Execução de consumo e publicações de mensagens no tópico "devices". À
esquerda a publicação de mensgaens e à direita o consumo, bem como o
resultado de publicação.

Fonte: Autor

Código 5.3 – Logs de execução de publicação no tópico "devices"
1634691102: New c l i e n t connected from 127 . 0 . 0 . 1 : 4 0 8 5 0 as

test−consumer (p2 , c1 , k60 , u ’ t c c_tes t ’ ) .
1634691108: New connect ion from 127 . 0 . 0 . 1 : 4 0 8 5 2 on port 1883 .
1634691108: New c l i e n t connected from 127 . 0 . 0 . 1 : 4 0 8 5 2 as

test−producer (p2 , c1 , k60 , u ’ t cc_tes t ’ ) .
1634691108: C l i en t test−producer d i s connected .

A recepção das mensagens pelo serviço Python foi testada da mesma maneira,
isto é, através da subida do serviço, da execução do comando Cód.(5.2) e da verificação
dos logs produzidos pelo serviço. Os resultados são apresentados na figura Fig.(27a). A
mensagem Message ’this is a test message’ coudn’t be serialized as json object. se deve ao
fato que o dado de entrada não é uma mensagem do tipo documento (json), o que não
acontece quando é enviado a mensagem {"device_guid": "this is a test message"}
(figura Fig.(27b)).

Figura 27 – Integração de servidor MQTT e Python. À esquerda as publicações e à direita
os logs.

(a) Consumo do tópico "devices" pelo serviço Python.

(b) Publicação feita com conteúdo em json.

Fonte: Autor
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É possível notar, a partir das figuras Fig.(27a) e Fig.(27b), que através da combi-
nação de um servidor de protocolo MQTT e de um script Python, operações lógicas são
possíveis de serem feitas sobre as mensagens recepcionadas dos sensores em tempo real. De
fato, é possível, através do arquivo requirements.txt, definir qualquer pacote de Python
que ele será instalado no momento de construção da mensagem. Cautela deve ser tomada
na escolha de tais pacotes dado que existem fatores, como capacidade de processamento e
armazenamento de dados, que podem impactar o desempenho em geral. Ainda, a qualidade
de código possui gigante influência sobre a performance do serviço.

5.1.2 Regional

Da mesma forma que para os servidores MQTT, o cluster Kafka teve sua integração
testada primeiramente através da produção de mensagens diretamente em seu servidor
(isolado dos gateways) e então através de mensagens submetidas aos tópicos MQTT
(integrado aos gateways.) Após a subida das imagens, o consumo e a produção de mensagens
diretamente no servidor se deram pelos comandos Cód.(5.4) e Cód.(5.5), respectivamente,
com o resultado evidenciado pela imagem Fig.(28).

Código 5.4 – Comando de consumo de tópicos Kafka
docker−compose exec broker \

kafka−conso le−consumer \
− −bootstrap−se r v e r l o c a l h o s t :29091 \
− −top i c test−top i c

Código 5.5 – Comando de produção em tópicos Kafka
docker−compose exec broker \

kafka−conso le−producer \
− −broker−l i s t l o c a l h o s t :29091 \
− −top i c test−top i c

Figura 28 – Execução de consumo e publicações de mensagens no tópico "test-topic", Kafka.
À esquerda a publicação e à direita o consumo.

Fonte: Autor

Com o consumo apontando ao mesmo endereço, foi realizado um teste integrado
ao gateway por meio do comando Cód.(5.2), aqui com o conteúdo já em json. O resultado
foi semelhante, e está apresentado na figura Fig.(29). Ainda, utilizando de um processo
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ConsumeKafka, foi possível consumir a mensagem através do NiFi, como demonstra a
figura Fig.(30).

Figura 29 – Teste de integração do servidor MQTT ao broker Kafka.

Fonte: Autor

Figura 30 – Consumo de mensagens publicadas em broker Kafka usando NiFi.

(a) Processo de consumo Kafka.

(b) Conteúdo da mensagem.

Fonte: Autor

5.1.3 Nuvem

Para testar a ingestão nos serviços AWS S3 e AWS DynamoDB, foi utilizado o
modelo de conteúdo presente no código Cód.(4.1) atualizando o campo de timestamp
para o momento da requisição. A figura Fig.(31) demonstra a entrada da mensagem nos
processos de ingestão dos serviços. As figuras Fig.(32a), Fig.(32b) e Fig.(32c) demonstram
o arquivo chegando no S3, ao passo que na figura Fig.(33a) e Fig.(33b) é apresentado a
chegada dos documentos no DynamoDB.
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Figura 31 – Chegada de mensagens nos processos de ingestão do S3 e DynamoDB.

Fonte: Autor

5.2 Cluster Kafka e replicação de mensagens
Assim como discutido na seção de Metodologia (Sec.(4)), a etapa específica teve

na camada regional a implementação de um cluster kafka constituído de três brokers,
onde todos apontam ao orquestrador Zookeeper pela porta 2181. Após subida dos serviços
Docker, a verificação dos brokers ativos foi feito através do comando apresentado no
código Cód.(5.6), a qual retornou o log de execução abaixo. É possível notar que os
ids de brokers ativos são respectivos aos valores que foram definidos de id para cada
um dos brokers no arquivo docker-compose.yml. Os detalhes de cada um deles pôde
ser acessado diretamente pelo orquestrador Zookeeper através do comando zookeeper-
shell localhost:2181 get /brokers/ids/${id} (${id} o id do broker), demonstrado
na figura Fig.(34).

Código 5.6 – Comando de listagem de ids de brokers ativos no cluster Kafka.
$ docker−compose exec zookeeper \

zookeeper−s h e l l \
l o c a l h o s t :2181 \
l s / broker s / i d s

Connecting to l o c a l h o s t :2181

WATCHER: :

WatchedEvent s t a t e : SyncConnected type : None path : nu l l
[ 1 , 2 , 3 ]

Com a subida do cluster Kafka, foi possível criar os tópicos da etapa especí-
fica com o fator de replicação e particionamento configurados, respectivamente, como 2
e 10. Com o comando kafka-topics –describe –zookeeper zookeeper:2181 –topic
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Figura 32 – Ingestão de mensagens no S3.

(a) Ingestão de dados no S3. Nota-se que o status da execução é de sucesso.

(b) Nome e caminho de arquivo no S3.

(c) Nome de arquivo no NiFi.

Fonte: Autor

${nome_topico} (${nome_topico} sendo o nome do tópico) foi possível extrair as infor-
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Figura 33 – Ingestão de mensagens no DynamoDB.

(a) Execução de ingestão de mensagem no DynamoDB com sucesso.

(b) Documento na tabela test-table.

Fonte: Autor

mações de particionamento, replicação e qual é o broker líder da partição, assim como
mostra a figura Fig.(35) para o tópico devices-temperature.

Como padrão da imagem Docker utilizada neste projeto (confluentinc/cp-kafka:6.2.0 ),
todas as mensagens registradas nos tópicos ficam sobre o diretório /var/lib/kafka/data/.
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Figura 34 – Extração de informações de brokers Kafka ativos no orquestrador Zookeeper.

Fonte: Autor

Figura 35 – Detalhamento de tópico devices-temperature em cluster Kafka.

Fonte: Autor

Neste diretório, como cada tópico criado teve um parâmetro de particionamento igual a 10,
foram criados 10 sub-diretórios de particionamento para cada tópico, o que acontece para
cada broker ativo no cluster. A figura Fig.(36) mostra, para o broker a, os sub-diretórios
criados como resultado do particionamento dos tópicos.

Figura 36 – Particionamento dos sub-diretórios, no broker a, para cada um dos tópicos
criados.

Fonte: Autor

Para testar a replicação das mensagens, foi realizado um teste de publicação
especificando uma chave (key) de particionamento. Esta chave, através de um algoritmo
round-robin, elege qual particionamento do tópico as mensagens deverão ser publicadas.
No exemplo da figura Fig.(37), a chave key0 foi eleita para ser publicada na partição
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4 do tópico devices-temperature. Pela figura Fig.(35), esta partição está replicada
nos brokers b e c (id 2 e 3, respectivamente), e portanto qualquer mensagen publicada
com esta chave será salva nos arquivos /var/lib/kafka/data/devices-temperature-
4/00000000000000000000.log dos brokers mencionados. A figura Fig.(38) demonstra
justamente isso: a mensagem publicada na figura Fig.(37) foi replicada para os brokers b e
c na partição 4 do tópico devices-temperature.

Figura 37 – Publicação de mensagens no tópico devices-temperature com chave de
particionamento.

Fonte: Autor

Figura 38 – Conteúdo dos arquivos de logs nos brokers b (esquerda) e c (direita) para o
tópico devices-temperature, partição 4.

Fonte: Autor

Com a replicação de mensagens, o consumo delas pôde ser feito em cenários onde um
dos brokers se torna inativo. Por exemplo, ao desligar o broker c, as mensagens publicadas
ao tópico devices-temperature na partição 4 continuam passíveis de serem consumidas,
pois elas continuam sendo escritas no broker b. A figura Fig.(39) demonstra este cenário,
onde é possível verificar que as mensagens publicadas ao tópico continuam sendo gravadas
no broker b. Com isso as mensagens publicadas ao tópico continuam disponíveis para
consumo mesmo em cenários de quedas e pânes de nódos, garantindo maior resiliência à
arquitetura.

É válido destacar que a escolha apropriada da quantidade de brokers, do parti-
cionamento de cada tópico, de nódos de orquestramento (instâncias Zookeeper) e do
fator de replicação dependem diretamente do cenário de uso, publicação e consumo dos
tópicos. Quanto maior a quantidade de clients realizando a publicação e o consumo dos
tópicos, preferencialmente maior deverá ser a quantidade de partições de cada tópico.
Ainda, dependendo da criticidade e do valor de negócio de cada mensagem, a arquitetura
deverá comportar mais brokers no cluster a fim de se garantir maior resiliência. Como este
exemplo se trata de uma prova de conceito, o valor arbitrário de 10 partições por tópico
e 3 brokers no cluster foi escolhido. Para adequar esta escolha a um caso aplicado, um
levantamento de métricas dos fatores mencionados deve ser feito.
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Figura 39 – Publicação e escrita de mensagens no cenário de queda do broker c.

(a) Publicação de mensagem.

(b) Mensagens publicadas no tópico devices-temperature, parti-
ção 4, após desligar o broker c.

Fonte: Autor

5.3 Consumo de dados da nuvem
Na seção Metodologia Sec.(4), foram apresentados as especificações da arquitetura

do cenário específico, bem como os dados gerados pela fonte que seriam consumidos e
replicados à nuvem. A partir da modelagem detalhada na tabela Tab.(2), foi usado o
software IoT-data-simulator para a geração dos dados e, conforme o detalhamento da
arquitetura, dos serviços AWS S3, DynamoDB e RDS para o armazenamento em nuvem
de tais dados para, respectivamente, batch, stream e dados estruturados.

Os dados em batch foram armazenados em um serviço AWS S3, particionados
por data e hora de armazenamento de carga. Todos os arquivos foram convertidos em
formato .parquet para otimização de volumetria de armazenamento. As figuras Fig.(40)
demonstram um exemplo de carga executado no dia 28 de Outubro de 2021, às 20:00
horas. Cada arquivo possui em média de 3.5 KB, o que é respectivo à aproximadamente
5 minutos de agregação de registros conforme o tempo de disparo do simulador. Este
volume pode ser ajustado dependendo da necessidade para, por exemplo, agregar mais ou
menos dados, ou agregá-los em uma janela de tempo maior, de forma que a escolha mais
adaptada deve ser feito com base no cenário de aplicação.

Os dados armazenados em forma de stream foram gravados em tabelas no Dyna-
moDB separadas por tipo de evento recebido. Todos foram armazenados com tempo limite
de expiração de um dia, de forma que durante este tempo eles se mantiveram disponíveis
para consumo. As figuras Fig.(41) mostram o histórico de execução de requisições de
escrita nas tabelas DynamoDB para a mesma carga executada no dia 28 de Outubro de
2021, às 20:00 horas.
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Figura 40 – Armazenamento de batch de dados no S3, particionados por data e hora.

(a) Dados de amônia.

(b) Dados de temperatura.

Fonte: Autor

Através de um processo PutDatabaseRecord, no Nifi, os registros também foram
ingeridos em um banco de dados Postgres, através do uso do serviço AWS RDS. Cada
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Figura 41 – Histórico de requisições de escrita feito em cima das tabelas DynamoDB.

(a) iot-stream-ammonia.

(b) iot-stream-humidity.

(c) iot-stream-temperature.

(d) iot-stream-luminosity.

Fonte: Autor
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tipo de evento foi inserido nas suas tabelas respectivas, criando assim uma base contendo
todos os eventos disparados pelos sensores simulados.

Os dados contidos no banco de dados Postgres foram, através de uma conexão
JDBC, extraídos para o Google Data Studio, no qual foi possível criar uma tela de
Dashboard para cada tipo de métrica, contendo, para cada estação (A e B) uma evolução
temporal das medidas (métricas de cada dispositivo segregados por cores distintas), uma
tabela com os últimos registros da base e um ponteiro de média. As telas de dashboard
estão apresentadas nas figuras Fig.(42), Fig.(45), Fig.(43) e Fig.(44) para os eventos de
amônia, umidade, temperatura e luminosidade, respectivamente.

5.4 Discussões
É valido mencionar que o uso dos serviços discutidos nesta seção, bem como os

resultados evidenciados, tomam como base um cenário hipotético e de relativamente baixa
volumetria, variedade e velocidade de dados. Desta forma, a volumetria de dados disponíveis
para consumo são relativamente baixos, e, ainda, não exprimem nenhum resultado com
base em métricas reais, dado que os dados são gerados via um simulador.

Porém, assim como foi apontado na seção de Introdução Sec.(1), principalmente
nos objetivos do projeto, a arquitetura proposta e testada de acordo com a metodologia
discutida tinha como principal finalidade a de servir como uma prova de conceito, isto
é, validar a possibilidade de integrar serviços que são já conhecidos amplamente por
segurança, escalabilidade e resiliência, para interoperar conforme foram integrados a fim
de se provisionar uma solução que fosse capaz de: i) oferecer um nível de processamento já
na recepção dos dados dos sensores (gateways); ii) recepcionar todos os dados gerados por
sensores em uma estação única, implementando uma esteira de dados conforme chegada
de eventos (regional); iii) ser capaz de enviar todos os eventos, já validados pela esteira,
à nuvem, tanto em tempo real quanto em forma agregada; iv) desenhar a integração
de todos os serviços em imagens virtualizadas (Docker) para facilitar a manutenção e a
reprodutibilidade; v) garantir que os registros enviados à nuvem pudessem ser, em casos
específicos, usados para qualquer aplicação analítica ou de negócio.

De fato, todos os serviços foram implementados em arquivos docker-compose.yml
respectivo à sua camada específica (regional ou gateway), e então integrados através de
conexões internas ou externas. Como resultado, todos os eventos foram devidamente
validados, tratados e então enviados para serviços de armazenamento situados na nuvem
da AWS, de forma que pudessem ser resgatados tanto para finalidades analíticas (banco de
dados Postgres e tabelas DynamoDB) quanto para reprocessamento ou de forma agregada
(S3). As especificades de volumetria, frequência de requisições, esteiras de tratamento,
análise dos dados, quantidade de gateways e de brokers no cluster Kafka devem ser
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Figura 42 – Dashboard para os eventos de amônia.

Fonte: Autor

dimensionados de acordo com a aplicação.

É interessante que, com as métricas sendo acessíveis, é possível realizar ações e
tomadas de ação com bases nos eventos registrados nas bases de dados. De fato, é possível
fazer uso de atuadores para acionar sistemas de controle de temperatura e umidade relativa,
bem como notificar quando a concentração de amônia está acima do limite estipulado.
Esta implementação não é limitada a recursos robustos de processamento, como o regional,
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Figura 43 – Dashboard para os eventos de temperatura.

Fonte: Autor

mas também é possível de ser implementado em um nódo de gateway, trazendo, assim, a
habilidade de se realizar fog computing.

Como possíveis desenvolvimentos e estudos futuros, é interessante trazer a arquite-
tura proposta para um caso real, visando evidenciar limitações que possam surgir referente
a implementação da arquitetura ou se é necessário alterar algum dos componentes. Como
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Figura 44 – Dashboard para os eventos de luminosidade.

Fonte: Autor

este projeto visou desenvolver um sistema agnóstico de caso de uso, é possível que surjam
pontos específicos e que possam ser agregados ao projeto, dado que o mesmo se encontra de
forma aberta no GitHub, para mitigar dificuldades e até mesmo ampliar as possibilidades
de uso.
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Figura 45 – Dashboard para os eventos de umidade.

Fonte: Autor
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6 CONCLUSÃO

Neste estudo foi realizada a integração de uma arquitetura híbrida proposta para
casos de sistemas IoT, onde, para cada camada desta proposta, foram integrados softwares
open-source amplamente conhecidos para provisionar um cenário no qual muitos sensores
em diversas estações de monitoramento geram dados de métricas que sejam validados,
tratados e então enviados para a nuvem. Entende-se, neste estudo, que cada sítio onde se
encontram os sensores configura uma "estação", na qual, para cada uma delas, se encontra
um dispositivo de sistema embarcado, denominado de gateway, que hospeda um servidor
de protocolo MQTT (Mosquitto) e um software para validação de eventos em tempo real
(Python). Todos os gateways se comunicam à uma estação local e centralizada, chamada
aqui de camada regional, onde os eventos são enviados a um cluster Kafka e então tratados
por uma esteira de dados Nifi. Após tratamento, os dados são disponibilizados na nuvem
através de bases específicas que servem finalidades diferentes.

Como estudo de caso, a arquitetura proposta foi usada para simular um cenário
de uso de IoT para monitoramento de uma estação de avicultura. Para este caso, o
desenvolvimento da integração foi orientado à duas estações, denominadas A e B, cada
qual com uma quantidade específica de sensores, integrados a um cluster Kafka de três
brokers, sendo os eventos tratados e enviados à nuvem por uma esteira de dados Nifi. Os
dados foram gerados de forma sintética através do software IoT-data-simulator, onde,
como resultado, foi possível obter um dashboard que resumia os valores de cada métrica
emulada, bem como resgatar os dados agregados do serviço AWS S3, da base de dados
NoSQL DynamoDB e do Postgres SQL.

Com os resultados obtidos, foi possível evidenciar que a presente proposta consegue
provisionar cenários de queda de alguns dos serviços (por exemplo, broker Kafka) e o
tratamento e validação dos eventos gerados em tempo real. Ainda, a conexão com a camada
regional se provou possível após a implementação de duas estações de monitoramento,
podendo ser extendido para demais nódos (estações) dependendo do caso de uso. É
importante ressaltar que quaisquer especificades podem exigir novos dimensionamentos de
recursos, como quantidade de nódos de gateways, brokers Kafka, agregação de dados na
esteira Nifi, e estruturação e tratamentos específicos dos dados.

Como possíveis estudos futuros, sugerimos colocar os métodos e resultados propostos
à prova em um cenário real. A arquitetura foi desenhada de forma agnóstica, necessitando
ser testada e validada para cada caso de uso. Estudos nesta linha podem evidênciar
eventuais melhorias de arquitetura ou de desempenho, o que pode contribuir para a
evolução e melhorias futuras.
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